Abstract:
A method of measuring an electromagnetic field in a formation can include installing an electromagnetic sensor with improved sensitivity, the sensor including multiple optical waveguides and respective multiple materials, and in response to exposure to the electromagnetic field, the materials changing shape in opposite directions. A well system can include an optical electromagnetic sensor which measures an electromagnetic field in a formation, and wherein optical path lengths or phases in optical waveguides of the sensor change both positively and negatively in response to exposure to the electromagnetic field. A method of monitoring a formation can include installing an optical electromagnetic sensor in a wellbore which penetrates the formation, and an optical path length/phase in an optical waveguide of the sensor increasing in response to exposure to the electromagnetic field, and an optical path length/phase in another optical waveguide of the sensor decreasing in response to exposure to the electromagnetic field.
Abstract:
A method of controlling a pumping sequence of a fracturing fleet at a wellsite. A managing application executing on a computer in the control van can retrieve the pumping sequence from a local or remote storage computer. The managing application can establish an electronic communication link to receive sensor data from a plurality of fracturing units. The managing application can control the plurality of fracturing units with a stage script with multiple sequential instructions for a pumping stage of a pumping sequence while receiving one or more periodic data sets from the plurality of fracturing units wherein the data sets are indicative of the current state of the pumping stage of the pumping sequence.
Abstract:
A method of controlling a pumping sequence of a fracturing fleet at a wellsite while performing a fracturing job on a treatment wellbore penetrating a subterranean formation. A modeling application receives sensor data from the treatment wellbore and/or a monitoring wellbore, predicts a fracture propagation within the formation, and produces a pumping sequence to obtain the fracture propagation or a real-time update to the pumping sequence. The pumping can include two or more sub-stages, wherein the modeling application employs a first pumping routine model to provide a first sub-stage of the pumping sequence and employs a second pumping routine model to provide a second sub-stage of the pumping sequence. A managing application controls the fracturing fleet in accordance with the pumping sequence to place a fracturing fluid in the treatment well.
Abstract:
Aspects of the subject technology relate to systems and methods for determining cement barrier quality of a cementing process. Systems and methods are provided for receiving data from a distributed acoustic sensing fiber optic line positioned proximate to cement barrier of a wellbore, determining at least one zonal isolation in the cement barrier based on the data received from the distributed acoustic sensing fiber optic line, and compiling a cement bond log based on the determining of the at least one zonal isolation in the cement barrier.
Abstract:
An opto-acoustic flowmeter can include an optical waveguide and an emitter that emits acoustic energy in response to flow, the acoustic energy comprising a flow rate dependent parameter. A flow rate measuring method can include configuring an emitter so that flow into or out of a tubular string causes the emitter to emit acoustic energy, arranging an optical line so that the acoustic energy is received by an optical waveguide of the optical line, and detecting optical scatter in the optical waveguide. A well system can include multiple locations where fluid is flowed between an earth formation and a tubular string in a wellbore, multiple emitters that produce an acoustic vibration corresponding to a flow rate of the fluid, an optical line that receives the vibrations, and an optical interrogator that detects optical scatter in an optical waveguide of the line, the scatter being indicative of the vibrations.
Abstract:
An optical waveguide pumping method can include pumping a liquid fluid through a conduit, thereby pumping an optical waveguide into the conduit, and operating a fluid recovery device, so that fluid pressure in the conduit is less than a vapor pressure of the fluid and/or fluid temperature in the conduit is reduced from above a boiling point temperature of the fluid to below the boiling point temperature of the fluid. An optical waveguide pumping system can include a pump which pumps a liquid fluid into a conduit and thereby pumps an optical waveguide into the conduit, and a fluid recovery device connected to the conduit. The fluid recovery device reduces fluid pressure in the conduit to below a vapor pressure of the fluid and/or reduces fluid temperature in the conduit from above a boiling point temperature of the fluid to below the boiling point temperature of the fluid.
Abstract:
A downhole optical sensing system can include an optical fiber positioned in the well, the optical fiber including multiple cores, and one of the cores having a Brillouin scattering coefficient which is different from another one of the cores. A method of sensing strain and temperature as distributed along an optical fiber can include measuring Brillouin scattering in a core of the optical fiber disposed in a well, and measuring Brillouin scattering in another core of the optical fiber disposed in the well, the optical fiber cores being exposed to a same strain and temperature distribution in the well.
Abstract:
Various embodiments include methods and apparatus structured to install an optical fiber cable into a well at a well site. In a from-bottom-to-top embodiment, an anchor deployed at a selected location in a hole of the well can be used and the optical fiber cable can be pulled up to a surface of the well from the selected location. In a from-top-to-bottom embodiment, an optical fiber cable can be moved down from the surface until an end of the optical fiber cable is locked at a selected location by a catcher disposed at the selected location. With the optical fiber cable in the well, a portion of the optical fiber cable can be coupled to surface instrumentation. Additional apparatus, systems, and methods can be implemented in a variety of applications.
Abstract:
A data synthesis model generates synthetic sensor values for managing a well by an AI system. The data synthesis model is generated and trained using downhole sensor data and input variable data for an electric frac pump. The trained data synthesis model is executed by a well to generate a synthetic data value based on sensor data from the well and respective electric frac pump control values. A well AI system uses the generated synthetic data value, sensor data, and respective electric frac pump control values to determine adjustments to the electric frac pump.
Abstract:
The disclosed embodiments include distributed acoustic sensing (DAS) systems, methods to improve DAS properties of optical fibers, and optical fibers having improved DAS properties. In one embodiment, the system includes an optoelectronic device operable to generate optical pulses. The system also includes an optical fiber having a first end and a second end. The optical fiber is formed from a material having a Rayleigh back-scattering coefficient, and is operable to transmit optical pulses from the first end towards the second end and to reflect a first portion of the optical pulses towards the first end. The system further includes perturbations that are selectively imprinted on the optical fiber, where the perturbations are compatible with a range of wavelengths and are operable to reflect a second portion of the optical pulses towards the first end of the optical fiber if a wavelength of the optical pulses is within said range.