摘要:
A smell sensor includes an ion sensor in which a sensing section provided with a sensitive film configured to change a potential in accordance with a state of a measurement target is formed on a semiconductor substrate; a substance adsorption film disposed on the sensitive film and configured to change the state with adsorption of a smell substance; and a reference electrode configured to apply a reference voltage to the substance adsorption film. The reference electrode is disposed to be separated from the sensitive film and not to overlap the sensing section when viewed in a thickness direction of the semiconductor substrate.
摘要:
The purpose of the present invention is to measure pH of a sample with high accuracy in a pH sensor array, without the use of a glass reference electrode. Each time that a sample is measured, the potential Vrm of the sample is identified, and the identified potential Vrm is used to calculate the pH. The outputs Voi1 and Voi2 of a first element and a second element located near one another in a sensor array are represented as follows. Voi1=Si1×pHi1+Gi1×Vrm+Ci1, Voi2=Si2×pHi2+Gi2×Vrm+Ci2. Voi is the output of the element, Si and Gi are sensitivity coefficients, and Ci is a constant, these values having been derived in advance. Here, where the potential Vrm is constant, and the elements located near one another are presumed to be at equal pH (pHi1=pHi2), the potential Vrm is identified by solving a linear equation with two unknowns.
摘要:
Provided is an ion sensor including a supporting substrate, a plurality of cells, a silicon substrate, a plurality of transistors, and an analog-digital conversion circuit. The plurality of cells, the plurality of transistors, and the analog-digital conversion circuit are provided above the supporting substrate. Each of the plurality of transistors has a corresponding gate provided on a first surface of the silicon substrate. The analog-digital conversion circuit is provided on the silicon substrate. The ion-sensing surface is provided on a second surface of the silicon substrate. The second surface is opposite to the first surface.
摘要:
An ion sensor is configured such that part of a P well on which part a sensing section is provided is different, in dopant concentration, from the other part of the P well so that electric charges are injected merely to the sensing section in a state where a voltage is applied to an N-type substrate.
摘要:
Provided is a small-sized device for measuring an oxidation-reduction potential, whereby an oxidation-reduction current and an oxidation-reduction potential can be measured by reducing noise even when a signal from a solution being measured is small. A device for measuring an oxidation-reduction potential is provided with a substrate (10), a working electrode (15) mounted on a surface of the substrate (10), and a bipolar transistor (21) for amplifying the output of the working electrode (15) also provided on the surface of the substrate (10), and the signal amplified by the bipolar transistor (21) is inputted to a processing circuit (18).
摘要:
Proposed is a device for detecting a chemical/physical phenomenon, in which, via a novel scheme, charges are accumulated in a charge accumulation region. An amount of charges thus accumulated reflects the potential of a sensing region and the potential corresponds to an external environment (chemical phenomenon or physical phenomenon) to be detected. A charge accumulation region 5 includes a first potential well region FD1 that is continuous with a sensing region 3, the boundary potential of the charges held in the first potential well region FD1 being made equal to the potential of the sensing region 3, whereby the potential of the sensing region 3 is made to be reflected in the amount of charges held in the first potential well region FD1.
摘要:
Provided is a charge-transfer-type sensor suitable for high integration while eliminating a potential barrier. A sensor provided with a semiconductor substrate 10 partitioned into a sensing region 5 in which a potential varies in corresponding fashion to a variation in the external environment, a charge input region 2 for supplying charges to the sensing region 5, an input charge control region 3 interposed between the sensing region 5 and the charge input region 2, and a charge accumulation region 7 for accumulating electric charges transported from the sensing region 5, the sensor for detecting the amount of electric charges accumulated in the charge accumulation region 7, wherein a diffusion layer 4 is formed between the input charge control region 3 and the sensing region 5 of the substrate 10, and dopants for producing charges having the same polarity as the charges supplied from the charge input region 2 are diffused in the diffusion layer 4.
摘要:
Provided is a charge-transfer-type sensor suitable for high integration while eliminating a potential barrier. A sensor provided with a semiconductor substrate 10 partitioned into a sensing region 5 in which a potential varies in corresponding fashion to a variation in the external environment, a charge input region 2 for supplying charges to the sensing region 5, an input charge control region 3 interposed between the sensing region 5 and the charge input region 2, and a charge accumulation region 7 for accumulating electric charges transported from the sensing region 5, the sensor for detecting the amount of electric charges accumulated in the charge accumulation region 7, wherein a diffusion layer 4 is formed between the input charge control region 3 and the sensing region 5 of the substrate 10, and dopants for producing charges having the same polarity as the charges supplied from the charge input region 2 are diffused in the diffusion layer 4.
摘要:
The purpose of the present invention is to measure pH of a sample with high accuracy in a pH sensor array, without the use of a glass reference electrode. Each time that a sample is measured, the potential Vrm of the sample is identified, and the identified potential Vrm is used to calculate the pH. The outputs Voi1 and Voi2 of a first element and a second element located near one another in a sensor array are represented as follows. Voi1=Si1×pHi1+Gi1×Vrm+Ci1, Voi2=Si2×pHi2+Gi2×Vrm+Ci2. Voi is the output of the element, Si and Gi are sensitivity coefficients, and Ci is a constant, these values having been derived in advance. Here, where the potential Vrm is constant, and the elements located near one another are presumed to be at equal pH (pHi1=pHi2), the potential Vrm is identified by solving a linear equation with two unknowns.
摘要:
Present invention relate to a physical/chemical sensor and a physical/chemical phenomenon sensing device that can detect minute change of surface stress and can be reduced in size and arrayed and to provide a method for manufacturing the sameIn the sensor of the present invention, an air-gap 3 is formed on a surface of the light receiving surface 1a of a photodiode 1. The sensor comprises a membrane section 2 which is oppositely deposited, and the air-gap is blocked air-tightly or liquid-tightly. The membrane section has optical transparency and flexibility, the membrane section and the surface of the light receiving surface form a Fabry-Perot resonator. The sensing device of the present invention comprises a reference sensor, which comprises no air-gap, in addition to the sensor. The manufacturing method of the present invention comprises forming a sacrificial layer on the light receiving surface of the photodiode, depositing a protection layer on an area excluding a surface of the sacrificial layer, forming the membrane section on a membrane section construction area excluding a through area for etching, etching the sacrificial layer, and coating the through area for etching.