Abstract:
An assembly to connect two electronic components is provided herein. The assembly includes a lever unit with a lever and a base. The lever includes a primary cam member and a secondary cam member connected thereto. The lever also includes a hook member extending therefrom. The base includes a guide structure to engage with a drive pin. Rotation of the lever to move a first electronic component along a y-axis towards, a backplane. The secondary cam member to move the drive pin along the guide structure, and the hook member to engage with a second electronic component and mate the first electronic component and the second electronic component along the second axis.
Abstract:
A heat removal assembly is provided herein. The heat removal assembly includes an evaporator block, a heat pipe, and a condenser plate. The evaporator block removes heat from an electronic component. The evaporator block engages with the electronic component and forms a thermal connection therebetween that removes the heat from the electronic component. The heat pipe connects to the evaporator block to remove heat from the evaporator block. The condenser plate connects to the heat pipe and receives heat from the heat pipe. The condenser plate includes a thermal mating surface that mates with a thermal member, such that the heat is removed from the assembly via the thermal mating surface.
Abstract:
Heat dissipating system and method are disclosed. An example method includes removing heat from a rack component via a thermal transport. The method also includes applying a pressure at a fluid cooled thermal bus bar on a rack system to form a thermally conductive dry disconnect interface and form a heat path between the thermal transport and the fluid cooled thermal bus bar.
Abstract:
An assembly for liquid cooling is provided herein. The assembly includes a thermal member, a support member, and a gasket. The thermal member includes an array of cooling pins formed of a thermally conductive material to extend from the thermal member. The support member includes an inlet channel and an outlet channel. The inlet channel to provide a fluid to the array of cooling pins. The outlet channel to receive the fluid from the array of cooling pins. The gasket between the thermal member and the support member to form a cooling channel with a fluid tight seal therebetween.
Abstract:
According to an example, a cooling system includes a cooling fluid reservoir, a cooling apparatus in fluid communication with the cooling fluid reservoir, a chamber having a side in thermal contact with a portion of the heat generating component, in which cooling fluid delivered by the cooling apparatus is to be heated through receipt of heat from the heat generating component, a cooling plate positioned at a distance and separated from the chamber, and a cooling fluid tube connecting the chamber and the cooling plate, in which the heated cooling fluid is to flow through the cooling fluid tube to the cooling plate. The cooling plate is also to be in thermal contact with a heat exchanger that that is to remove heat from the cooling fluid.
Abstract:
An assembly useable with a cooling system is provided herein. The assembly includes a support member, a channel, and a fluid control mechanism. The support member includes a receiving member formed therein to receive a thermal member. The channel is formed within the support member to carry a fluid therethrough. The fluid control mechanism is along the channel to control the flow of the fluid.
Abstract:
In one implementation of a modular rack system, a rack module (22, 24, 222, 522, 722, 724) comprises a bay (30, 730) comprising a first side wall (32, 732), a second side wall (32, 732) and floor (36, 736) and an intermediate wall positioning mechanism (280, 380, 390, 392, 790, 792) to support a wall (282, 782) at different spacings with respect to the first side wall (32, 732). In another implementation of the modular rack system, a utility bay (148) extends across rack modules (22, 24, 222, 522, 722, 724).
Abstract:
Examples provide data center canopies, data center housings, and data centers including turning vanes to facilitate air flow. In some examples, a data center canopy may include turning vanes to direct portions of an exhaust flow from an exhaust inlet toward floor sections to be output via exhaust outlets opposite the floor sections. Other examples are described and claimed.
Abstract:
Examples provide data center canopies, data center housings, and data centers including turning vanes to facilitate air flow. In some examples, a data center canopy may include turning vanes to direct portions of an exhaust flow from an exhaust inlet toward floor sections to be output via exhaust outlets opposite the floor sections. Other examples are described and claimed.
Abstract:
A control apparatus is provided. The control apparatus includes an electronic engine, a facility engine, and a control engine. The electronic engine to communicate with an electronic control system. The facility engine to communicate with a facility control system. The control engine to provide an interface between the electronic engine and the facility engine to unify control of the electronic control system and the facility control system.