Abstract:
Disclosed is a mask defect repair apparatus that is capable of performing defect repair with high accuracy without exposure of a mask to air while being moved between the mask defect repair apparatus and an inspection device. The mask defect repair apparatus emits charged particle beams with an amount of irradiation therewith which is corrected by a correction unit while supplying gas to a defect of the mask, thereby forming a deposition film.
Abstract:
A charged particle beam apparatus includes a charged particle beam column for irradiating a sample with a charged particle beam, and a sample stage unit for moving the sample relative to the charged particle beam column. The sample stage unit includes a rotary stage section having a base portion and a rotary mover rotatable about a rotary axis relative to the base portion. A rotary connector is disposed coaxially with and rotatable about the rotary axis and fitted between the base portion and the rotary mover for electrically connecting wirings between relatively rotating elements. A connection electrode is disposed on the sample stage unit in electrical connection with the rotary connector. In the charged particle beam apparatus, the sample is able to be rapidly placed and replaced.
Abstract:
A charged particle beam apparatus includes: a sample chamber; a sample stage; an electron beam irradiation system for irradiating the sample with an electron beam; a focused ion beam irradiation system for irradiating the sample with a focused ion beam; a sample stage drive unit having a rotational axis orthogonal to at least one of an irradiation axis of the electron beam irradiation system and an irradiation axis of the focused ion beam irradiation system; and a sample transporting mechanism for transporting the sample to the sample stage. The sample transporting mechanism includes a transportation path provided in the sample stage drive unit in a direction parallel to the rotational axis of the sample stage drive unit, and is configured to transport the sample to the sample stage through the transportation path.
Abstract:
A sample carrying device includes a sample carrying rod that carries a sample in the left-right direction in a sample compartment and a preparatory sample compartment, a support body that supports the sample carrying rod, a case that supports the support body such that the support body can rotate around a rotational axis perpendicular to the left-right direction, and an Q-ring disposed between the support body and the case for sealing the sample compartment and the preparatory sample compartment. The sample carrying rod can be switched between a use state where it can carry a sample and a stowed state where it has been moved in the up-down direction from the use state by rotation of the support body. The sample carrying device can easily stow a sample carrying rod in a small space.
Abstract:
Provided is a transport device in which a reduction in the size and a reduction in the cost of the entire device are possible. A transport unit which is interposed between a sub-chamber and a first treatment chamber is provided with: a transport bar which transports a sample along a right-left direction in a preliminary sample chamber; a support which supports the transport bar; a case which supports the support so as to be rotatable around a rotation axis intersecting the right-left direction; and a second O-ring which seals an inside of the case. The preliminary sample chamber and a first treatment space can communicate with each other through the inside of the case. The transport bar is made so as to be able to transition between a first state where the transport bar can transport the sample between the preliminary sample chamber and the inside of the case, and a second state where the transport bar can transport the sample between the first treatment space and the inside of the case, by rotation of the support with respect to the case.