Abstract:
A dichroic mirror array in which a plurality of dichroic mirrors are arranged, and by satisfying a predetermined relationship between a width, a thickness, a material, a tilt, an interval, and a step difference of each dichroic mirror, the dichroic mirror array is miniaturized, an optical path length is reduced, and at the same time, an opening width is increased.
Abstract:
A multicolor detection device includes: a condensing lens array 17 in which a plurality of condensing lenses 18, each of which turns light emitted from each of a plurality of light emitting points 1 individually into parallel light beams, are arranged, the light emitting points being arranged in a light emitting point array; at least one spectroscopic element on which the parallel light beams are incident in parallel, the at least one spectroscopic element being common; and at least one sensor on which light beams spectrally separated by the spectroscopic element are incident in parallel, the at least one sensor being common.
Abstract:
An analysis system includes an analyzer configured to separate a sample including a plurality of components labeled with any of M kinds of fluorescent substances by chromatography and acquire first time-series data of fluorescence signals detected in N kinds (M>N) of wavelength bands in a state in which at least a part of the plurality of components is not completely separated; and a computer configured to compare the first time-series data with the second time-series data, and determine which kind of fluorescent substance of M kinds of fluorescent substances individually labels each of the plurality of components.
Abstract:
A laser beam 6 irradiated from a side face of a microchip 1 in which plural channels 2 fill ed with a member of a refractive index n2 in an inner portion of a member of a refractive index n1 (n2 lower base, and is deviated swiftly from a channel array. Hence, the laser beam 6 is made to be deviated gradually from the channel array by irradiating the laser beam 6 from the side face of the microchip 1 by being inclined relative to the same plane in a direction of being directed from the lower base to the upper base. As a result, a larger number of the channels 2 can efficiently be subjected to laser beam irradiation.
Abstract:
The invention is directed to a light-emission detection apparatus for individually condensing light emitted from each emission point of a emission-point array using each condensing lens of a condensing-lens array to form a light beam and detecting each light beam incident on a sensor in parallel, and the light-emission detection apparatus can be downsized and high sensitivity and low crosstalk can be simultaneously accomplished when a certain relation between the diameter of each emission point, a focal length of each condensing lens, an interval of condensing lenses, and an optical path length between each condensing lens and a sensor is satisfied.
Abstract:
A multicolor detection device includes: a condensing lens array 17 in which a plurality of condensing lenses 18, each of which turns light emitted from each of a plurality of light emitting points 1 individually into parallel light beams, are arranged, the light emitting points being arranged in a light emitting point array; at least one spectroscopic element on which the parallel light beams are incident in parallel, the at least one spectroscopic element being common; and at least one sensor on which light beams spectrally separated by the spectroscopic element are incident in parallel, the at least one sensor being common.
Abstract:
In order to provide a piston and a syringe with good sliding performance and pressure resistance performance, the piston contained in the syringe that pressurizes or decompresses an internal medium is configured such that a soft portion made of a soft material and a rigid portion made of a material having rigidity higher than rigidity of the soft portion, are connected in series, and arranged such that the soft portion is in contact with the medium and the rigid portion is not in contact with the medium. The soft portion includes a hollow on a surface in contact with the medium. The rigid portion has an end surface facing the soft portion, the end surface including at least an outer peripheral portion in contact with the soft portion. The outer diameter of the soft portion is larger than the outer diameter of the rigid portion, and the outer diameter of the rigid portion is slightly smaller than the inner diameter of an outer cylinder of the syringe.
Abstract:
The purpose of the present invention is to provide a DNA transport control device having excellent reliability and durability, and a DNA sequencing device that uses the DNA transport control device. The present invention provides a DNA transport control device having a nanopore which allows for the passage of only the DNA strand of a single molecule, and a DNA sequencing device that uses the DNA transport control device. The DNA transport control device is characterized by the following: including a base material having openings and a thin film a block copolymer formed on the base material; the thin film including microdomains that are formed as a result of self-assembly of the block copolymer and that penetrate the thin film, and a matrix surrounding the microdomains; and the nanopore being formed from one opening in the base material and a single microdomain.