Abstract:
When a cluster is configured by hypervisors of a plurality of servers, a shared storage including internal storages of the plurality of servers can be used. In a storage system in which a hypervisor managing VMs on each of the plurality of servers is included and the plurality of hypervisors configures a cluster, the plurality of servers each include a storage VM that provides the shared storage. One of the plurality of servers includes a manager VM that manages the hypervisors of the plurality of servers as the cluster. A virtual volume of the shared storage is provided as an LU for constructing the manager VM.
Abstract:
A live migration in a virtual computer system. On a source physical computer, the control information area of the source logical FC-HBA (managed by an OS) is copied to the control information area of a dummy logical FC-HBA managed by a hypervisor. After an FC login to the dummy FC-HBA, an address conversion table is rewritten so that a host physical address for referring to the control information area of a logical HBA1′ can be referred to using a guest logical address for referring to the control information area of the source FC-HBA. After the FC logout of the source FC-HBA, using a WWN of the FC used for the FC logout, a login to the destination logic FC-HBA is performed. Next, the OS on the source computer is taken over by the destination computer. Therefore, the disk accessed on the source computer can be accessed from the destination FC-HBA.
Abstract:
Provided is a technique of securing reliability of a gate insulating film, as much as in a Si power MOSFET, in a semiconductor device in which a semiconductor material having a larger band gap than silicon is used, and which is typified by, for example, an SiC power MOSFET. In order to achieve this object, in the in the SiC power MOSFET, the gate electrode GE is formed in contact with the gate insulating film GOX, and is formed of the polycrystalline silicon film PF1 having the thickness equal to or smaller than 200 nm, and the polycrystalline silicon film PF2 formed in contact with the polycrystalline silicon film PF1, and having any thickness.
Abstract:
A hypervisor as a movement source stores key information, and the key information is registered in a storage using the stored key information through a logical HBA which is used for migration.
Abstract:
There is provided a storage migration method including sending, by a maintenance PC, a power-off instruction for migration to a migration source storage, sending, by the migration source storage, storage configuration information to the maintenance PC, turning off the power of the migration source storage when it is confirmed that the maintenance PC has received the storage configuration information, sending, by the maintenance PC, the storage configuration information and a power-on instruction for migration to a migration destination storage, and outputting, by the maintenance PC, a migration completion notification when a disk drive relocated from the migration source storage can be confirmed to be set in the migration destination storage.
Abstract:
Performance deterioration of a storage system is prevented. A storage controller includes one or more processors, and one or more memories configured to store one or more programs to be executed by the one or more processors. The one or more processors are configured to execute conversion of converting metadata before conversion for controlling the storage system into metadata after conversion in a format corresponding to a new controller newly installed in the storage system, execute control of switching an access destination between the metadata before conversion and the metadata after conversion according to an access control code during the conversion, and access the metadata before conversion without using the access control code before start of the conversion.
Abstract:
Provided is a semiconductor device whose performance is improved. A p type body region is formed in an n type semiconductor layer containing silicon carbide, and a gate electrode is formed on the body region with a gate insulating film interposed therebetween. An n type source region is formed in the body region on a side surface side of the gate electrode, and the body region and a source region are electrically connected to a source electrode. A p type field relaxation layer FRL is formed in the semiconductor layer on the side surface side of the gate electrode, and the source electrode is electrically connected to the field relaxation layer FRL. The field relaxation layer FRL constitutes a part of the JFET 2Q which is a rectifying element, and a depth of the field relaxation layer FRL is shallower than a depth of the body region.
Abstract:
A silicon carbide semiconductor device includes an n-type silicon carbide semiconductor substrate, a drain electrode electrically connected to a rear face, an n-type semiconductor layer having a second impurity concentration lower than the first impurity concentration, a p-type first semiconductor region, an n-type second semiconductor region, an n-type third semiconductor region, a trench having a first side face and a second side face opposing to each other and a third side face intersecting with the first side face and the second side face, a gate electrode formed in the trench with a gate insulating film interposed therebetween, a metal layer electrically connected to the third semiconductor region, and a source electrode electrically connecting the second semiconductor region and the metal layer to each other.