Abstract:
A MOSFET using a SiC substrate has a problem that a carbon-excess layer is formed on a surface by the application of mechanical stress due to thermal oxidation and the carbon-excess layer degrades mobility of channel carriers. In the invention, (1) a layer containing carbon-carbon bonds is removed; (2) a gate insulating film is formed by a deposition method; and (3) an interface between a crystal surface and the insulating film is subjected to an interface treatment at a low temperature for a short time. Due to this, the carbon-excess layer causing characteristic degradation is effectively eliminated, and at the same time, dangling bonds can be effectively eliminated by subjecting an oxide film and an oxynitride film to an interface treatment.
Abstract:
To solve a problem of realizing a large current and highly reliable power semiconductor device while shrinking a unit cell. A semiconductor device according to the present invention includes a plurality of p-type body regions extending in a first direction. The semiconductor device further includes: a JFET region formed to extend in the first direction between p-type body regions which are adjacent to each other in a second direction orthogonal to the first direction; an n+-type source region formed to extend in the first direction within a p-type body region and separate from an end side surface of the p-type body; and a channel region formed to extend in the first direction and in a top layer portion of a p-type body region between an end side surface of the p-type body region and an end side surface of an n+-type source region.
Abstract:
Provided is a technique of securing reliability of a gate insulating film, as much as in a Si power MOSFET, in a semiconductor device in which a semiconductor material having a larger band gap than silicon is used, and which is typified by, for example, an SiC power MOSFET. In order to achieve this object, in the in the SiC power MOSFET, the gate electrode GE is formed in contact with the gate insulating film GOX, and is formed of the polycrystalline silicon film PF1 having the thickness equal to or smaller than 200 nm, and the polycrystalline silicon film PF2 formed in contact with the polycrystalline silicon film PF1, and having any thickness.