Abstract:
A system includes a source of laser beams forming an array, a source of a reference laser beam, and an optical detector for measuring respective phase differences between the array laser beams and the reference laser beam. The system includes a mask, having apertures with a shape, size and position identical to a shape, size and position of the array laser beams, and positioned in the reference laser beam to form respective beams of the reference laser beam corresponding to the beams from the array laser beams. A phase modulator phase modulates respective beams of one of (a) the array laser beams and (b) the beams of the reference laser from the mask. A photodetector receives the respective array laser beams and the corresponding reference laser beams from the mask to generate a composite signal. Processing circuitry is responsive to the composite signal for generating respective signals representing the phase differences of the individual laser beams from the reference laser beam.
Abstract:
A method of manufacturing an optical waveguide includes: aligning a silicon on insulator wafer and a target substrate, the target substrate including a benzocyclobutene layer; bonding a silicon layer of the silicon on insulator wafer with the benzocyclobutene layer of the target substrate by using heat and pressure; and removing the silicon on insulator wafer such that the silicon layer remains on the benzocyclobutene layer.
Abstract:
A continuous wave (CW) heterodyne light detection and ranging (LIDAR) air velocity sensor system that comprises a first light emitting structure arranged to send a signal light in a first direction in space; a second light emitting structure arranged to produce a local oscillator light having a wavelength different from the wavelength of the signal light by a predetermined wavelength; a receiver arranged to receive light from said first direction in space; and a first optical mixer for mixing the received light with said local oscillator light.
Abstract:
A reconfigurable electro-magnetic tile includes a laser layer including a plurality of lasers, and a pixelated surface comprising a plurality of metal patches and a plurality of switches, wherein each respective switch of the plurality of switches is in a gap between a first respective metal patch and a second respective metal patch, wherein each respective switch is optically coupled to at least one respective laser of the plurality of lasers, and wherein each switch of the plurality of switches comprises a phase change material.
Abstract:
A continuous wave (CW) heterodyne light detection and ranging (LIDAR) air velocity sensor system that comprises a first light emitting structure arranged to send a signal light in a first direction in space; a second light emitting structure arranged to produce a local oscillator light having a wavelength different from the wavelength of the signal light by a predetermined wavelength; a receiver arranged to receive light from said first direction in space; and a first optical mixer for mixing the received light with said local oscillator light.
Abstract:
A coherent frequency modulated receiver for receiving and detecting arriving optical signals which comprises an electrically controllable optical beam scanner receiving optical input beams arriving at different angles in a field of view of the electrically controllable optical beam scanner, the electrically controllable optical beam scanner conveying a scanned optical input beam as its output optical beam; a grating coupler responsive to the output or reflected optical beam of the electrically controllable optical beams scanner, the grating coupler having a waveguided output; an optical local oscillator laser having a waveguided output; an FMCW signal generator; an optical modulator responsive to the optical waveguided outputs of the optical local oscillator laser and also to an electrical FMCW signal from the FMCW signal generator; a pair of second order non-linear optical elements for frequency upconverting respective outputs of the optical modulator and the grating coupler; and at least one photodiode optically coupled to an outputs of the pair of second order non-linear optical elements.
Abstract:
A micro-optical bench includes a substrate having a multi-layer trench and a micro-lens aligned by and mounted to the substrate in the multi-layer trench.
Abstract:
A micro-optical bench includes a substrate having a multi-layer trench and a micro-lens aligned by and mounted to the substrate in the multi-layer trench.
Abstract:
A reconfigurable electro-magnetic tile includes a laser layer including a plurality of lasers, and a pixelated surface comprising a plurality of metal patches and a plurality of switches, wherein each respective switch of the plurality of switches is in a gap between a first respective metal patch and a second respective metal patch, wherein each respective switch is optically coupled to at least one respective laser of the plurality of lasers, and wherein each switch of the plurality of switches comprises a phase change material.
Abstract:
A system for maintaining the locking range of an injection locked laser array within range of a frequency of a master laser includes first and second photodetectors. An injection locked laser array has a locking frequency range around a free running frequency controlled in response to a control signal. The laser array produces respective beams phase modulated at relative unique frequencies. A mask, has apertures with shapes, sizes, and positions identical to the shapes, sizes and positions of the lasers in the laser array. A first master laser produces a beam at a first frequency coupled to the laser array and illuminating the mask. A second master laser produces a beam at a second frequency separated from the first frequency by substantially the locking range of the laser array coupled to the laser array and illuminating the mask. Optics forms images of the reference beams of the first and second master lasers from the mask to the first and second photodetectors respectively, and forms images of the beams from the laser array to the same locations on the first and second photodetectors as the corresponding reference beams from the mask, A frequency controller, responsive to respective composite signals from the first and second photodetectors, detects modulation harmonics corresponding to each beam from the laser array from the first and second photodetectors and produces a frequency control signal.