Abstract:
A system of controlling an engine provided with a dual continuously variable valve duration device may include an engine, an intake valve for selectively supplying air or a mixture of the air and fuel to the combustion chamber, an ignition switch to ignite a burner to burn the mixture, and an exhaust valve disposed in the combustion chamber to selectively discharge exhaust gas in the combustion chamber to an outside of the combustion chamber, the dual continuously variable valve duration device provided to adjust an intake duration of the intake valve and an exhaust duration of the exhaust valve, a warm-up catalytic converter including a three-way catalyst for purifying hydrocarbons, carbon monoxide, nitrogen oxides contained in the exhaust gas downstream of the engine, and a controller for adjusting an ignition timing, the intake duration and the exhaust duration of the ignition switch based on a driving condition of a vehicle.
Abstract:
A method for controlling an exhaust gas purification apparatus according to an exemplary embodiment of the present invention is to improve performance of a three-way catalyst (TWC) purifying exhaust gas exhausted from an engine and includes determining heat load of the three-way catalyst by use of a temperature sensor and an exhaust gas flow rate sensor; measuring oxygen storage capacity (OSC) stored in the three-way catalyst according to the heat load; determining an inflection point by use of change amount of the OSC; and controlling catalyst heating period differently around the inflection point.
Abstract:
A catalyst carrier for purification of exhaust gas, may include a substrate having a plurality of cell paths partitioned by a cell barrier rib and a ceramic coating layer positioned on the inside surface of the cell path, where the ceramic coating layer has a porous lamellar structure arranged in an exhaust gas flow direction, and a method for preparing the same.
Abstract:
A supported catalyst for reduction reaction of nitrogen oxides includes a support and an silver (Ag)-based compound and aluminum fluoride which are immobilized in the support. A method for preparing the supported catalyst for reduction reaction of nitrogen oxides includes an impregnation step wherein aluminum fluoride, a hydrate or a salt thereof, and a silver (Ag)-based compound or a hydrate thereof are reacted with a support and a step of calcining the support. Nitrogen oxides in exhaust gas are removed by reacting with a reducing agent, in the presence of the supported catalyst for reduction reaction of nitrogen oxides. Wherein, the supported catalyst has an excellent nitrogen oxide removal efficiency at a practical exhaustion temperature of 270 to 400° C.
Abstract:
A method of preparing a catalyst for synthesizing dimethyl ether from synthetic gas includes preparing a mesoporous ferrierite zeolite (FER), and co-precipitating a precursor of a mesoporous ferrierite zeolite and a Cu—Zn—Al-based oxide (CZA) to obtain a hybrid CZA/mesoFER catalyst.
Abstract:
A system of controlling an engine includes: an engine including a combustion chamber, an intake valve, an ignition switch, and an exhaust valve; a dual continuously variable valve duration device to adjust an intake duration of the intake valve and an exhaust duration of the exhaust valve; and a controller for adjusting an ignition timing of the ignition switch, the intake duration, and the exhaust duration based on a driving condition of the vehicle. In particular, until the temperature of the exhaust gas reaches a predetermined temperature after the engine starts, the controller sets the ignition timing to an ignition timing within a predetermined ignition timing range, sets the intake duration of the intake valve to an intake duration within a predetermined intake duration range, and increases the exhaust duration of the exhaust valve to a limit exhaust duration according to the set intake duration.
Abstract:
A diesel engine exhaust gas treatment system with enhanced nitrogen oxide purification performance includes a nitrogen oxide adsorption part nitrogen adsorbing oxide (NOx) at a temperature of less than 200° C. and desorbing the nitrogen dioxide (NO2) at a temperature of 200° C. or more; and a nitrogen oxide purification part disposed at a lower side of the nitrogen oxide adsorption part and purifying the nitrogen oxide (NOx).
Abstract:
A catalyst oxygen purge control method may include a catalyst oxygen purge control method during a cold engine period of a catalyst oxygen purge control apparatus which includes a three way catalytic converter through which an exhaust gas combusted when air and fuel are mixed in a combustion chamber is exhausted and the exhaust gas passes, wherein the method includes determining whether a fuel cut condition of an injector which injects the fuel to the combustion chamber is satisfied, performing fuel cut of the injector when the fuel cut condition is satisfied, measuring an oxygen storage capacity of the three way catalyst, and adjusting an oxygen purge time based on the measured oxygen storage capacity.
Abstract:
A catalyst oxygen purge control method may include a catalyst oxygen purge control method during a cold engine period of a catalyst oxygen purge control apparatus which includes a three way catalytic converter through which an exhaust gas combusted when air and fuel are mixed in a combustion chamber is exhausted and the exhaust gas passes, wherein the method includes determining whether a fuel cut condition of an injector which injects the fuel to the combustion chamber is satisfied, performing fuel cut of the injector when the fuel cut condition is satisfied, measuring an oxygen storage capacity of the three way catalyst, and adjusting an oxygen purge time based on the measured oxygen storage capacity.
Abstract:
A preparation method of perovskite catalyst, represented by the following Chemical Formula 1: LaxAg(1-x)MnO3 (0.1≦x≦0.9), includes the steps of 1) preparing a metal precursor solution including a lanthanum metal precursor, a manganese metal precursor and a silver metal precursor, 2) adding maleic or citric acid to the metal precursor solution, 3) drying the mixture separately several times with sequentially elevating the temperature in the range of 160 to 210° C., and 4) calcining the dried mixture at 600 to 900° C. for 3 hours to 7 hours.