Abstract:
A waveform measurement device includes an input spectrum acquisition unit for acquiring an input intensity spectrum being an intensity spectrum of pulsed light, an optical element inputting the pulsed light and outputting light having an intensity spectrum corresponding to a phase spectrum of the pulsed light, an output spectrum acquisition unit for acquiring an output intensity spectrum being an intensity spectrum of the light output from the optical element, and a phase spectrum determination unit for determining the phase spectrum of the pulsed light by comparing an output intensity spectrum calculated when the pulsed light having an input intensity spectrum and a virtual phase spectrum is assumed to be input to the optical element with the output intensity spectrum acquired in the output spectrum acquisition unit. The phase spectrum determination unit sets the virtual phase spectrum by deforming the control phase spectrum.
Abstract:
An optical module (1A) includes a polarization beam splitter (10A), polarization elements (20 and 40) having nonreciprocal optical activity and respectively arranged on an optical path of a first polarization component (L2) transmitted through a light splitting surface (11) in irradiation light (L1) and an optical path of a second polarization component (L4) reflected in the light splitting surface (11), a first reflective SLM (30) that modulates and reflects a first polarization component (L2) passing through the first polarization element (20), and a second reflective SLM (50) that modulates and reflects the second polarization component (L4) passing through the second polarization element (40). First modulation light (L3) passing through the polarization element (20) again and then reflected by the light splitting surface (11) and second modulation light (L5) passing through the polarization element (40) again and then transmitted through the light splitting surface (11) are combined with each other.
Abstract:
An adaptive optics system includes a spatial light modulator configured to spatially modulate a phase of an optical image incident on a modulation surface including N two-dimensionally arranged regions and a wavefront sensor including a lens array having N two-dimensionally arranged lenses corresponding to the N regions and an optical detection element for detecting a light intensity distribution including M converging spots formed by the lens array and configured to receive the optical image after the modulation from the spatial light modulator, and compensates for the wavefront distortion by controlling a phase pattern displayed in the spatial light modulator based on a wavefront shape of the optical image obtained from the light intensity distribution, wherein a correspondence relation between the region of the spatial light modulator and the converging spot formed in the wavefront sensor is specified while the compensation for the wavefront distortion is executed.
Abstract:
A laser processing apparatus including a laser light source, a phase modulation type spatial light modulator, a driving unit, a control unit, and an imaging optical system. A storage unit that is included in the driving unit stores a plurality of basic holograms corresponding to a plurality of basic processing patterns and a focusing hologram corresponding to a Fresnel lens pattern. The control unit arranges in parallel two or more basic holograms selected from the plurality of basic holograms stored in the storage unit, overlaps the focusing hologram with each of the basic holograms arranged in parallel to form the whole hologram, and presents the formed whole hologram to the spatial light modulator.
Abstract:
An iterative Fourier transform unit of a modulation pattern calculation apparatus performs a Fourier transform on a waveform function including an intensity spectrum function and a phase spectrum function, performs a replacement of a temporal intensity waveform function based on a desired waveform after the Fourier transform, and then performs an inverse Fourier transform. The iterative Fourier transform unit performs the replacement using a result of multiplying a function representing the desired waveform by a coefficient. The coefficient has a value with which a difference between the function after the multiplication of the coefficient and the temporal intensity waveform function after the Fourier transform is smaller than a difference before the multiplication, and a ratio of the difference is smaller when an intensity is higher at each time of the function before the multiplication.
Abstract:
An iterative Fourier transform unit of a modulation pattern calculation apparatus performs a Fourier transform on a waveform function including an intensity spectrum function and a phase spectrum function, performs a replacement of a temporal intensity waveform function based on a desired waveform after the Fourier transform, and then performs an inverse Fourier transform. The iterative Fourier transform unit performs the replacement using a result of multiplying a function representing the desired waveform by a coefficient. The coefficient has a value with which a difference between the function after the multiplication of the coefficient and the temporal intensity waveform function after the Fourier transform is smaller than a difference before the multiplication, and a ratio of the difference is smaller when an intensity is higher at each time of the function before the multiplication.
Abstract:
An imaging system includes a light source for outputting initial pulsed light, a polarization control unit for rotating a polarization plane of the initial pulsed light, an optical pulse shaping unit for inputting the initial pulsed light with the rotated polarization plane, and outputting first pulsed light Lp1 having a first polarization direction and second pulsed light Lp2 having a second polarization direction different from the first polarization direction with a time, an irradiation optical system for irradiating an imaging object with the pulsed light Lp1 and the pulsed light Lp2, a light separation element for separating the pulsed light Lp1 and the pulsed light Lp2 reflected by or transmitted through the imaging object on the basis of the polarization directions, an imaging unit for imaging the pulsed light Lp1, and an imaging unit for imaging the pulsed light Lp2.
Abstract:
A data generating device sets an initial candidate solution of an intensity spectrum function, a phase spectrum function, and an initial temperature and a cooling rate, generates a neighborhood solution, transforms a first waveform function of a frequency domain including the neighborhood solution and the phase spectrum function into a second waveform function of a time domain including a time-intensity waveform function and a time-phase waveform function and calculates an evaluation value representing a degree of difference between the time-intensity waveform function and the desired time-intensity waveform, sets the neighborhood solution as an n-th candidate solution for a certain probability, and lowers the temperature on the basis of the cooling rate. A decrease in the temperature acts in a direction in which the probability P is lowered when the evaluation value of the neighborhood solution is worse than the evaluation value of the candidate solution.
Abstract:
A wavelength conversion element includes a crystal having a periodically poled structure in which polarization is inverted with an inversion period Λ along a z-axis which is an input axis of a light pulse. The wavelength conversion element is configured to generate an output the inversion period Λ(x) at each position x by change of the inversion period Λ according to the position x, and when a target frequency linearly changing with the position x is set to fT(x)=b+ax, a frequency width of the output frequency is set to δf(x), and the output frequency is set to f(x)=fT(x)+α(x), the output frequency is set to coincide with the target frequency within a range satisfying a condition |α(x)|≤δf(x).
Abstract:
A control apparatus includes a lens, an SLM presenting a modulation pattern on a modulation plane and outputting modulated light L2 for forming light spots P1 and P2 on a pupil plane of the lens, an imaging device imaging a fringe pattern image formed on a focal plane of the lens and generating image data Da indicating the fringe pattern image, a calculation unit calculating at least one kind of parameter among an intensity amplitude, a phase shift amount, and an intensity average from the image data Da, an analysis unit obtaining a deviation in relative positions of an optical axis of the lens and a reference coordinate of the modulation plane based on the parameter, and a changing unit changing an origin position of the reference coordinate so that the deviation in the relative positions is decreased.