摘要:
Some embodiments of the invention relate to manufacturing a semiconductor device with an implantation layer on a semiconductor substrate including a method of manufacturing such an implantation layer, wherein said implantation layer is formed in an implantation step at a predetermined depth of penetration, determined from a top surface of said semiconductor substrate, using a particle beam, by increasing its path distance to a main implantation peak and correspondingly increasing the energy level of said particle beam for producing an undamaged implantation layer having a thickness that is increased significantly compared with the thickness of an implantation layer that would be produced at said predetermined depth of penetration using a particle beam with non-increased path distance and energy level.
摘要:
Some embodiments of the invention relate to manufacturing a semiconductor device with an implantation layer on a semiconductor substrate including a method of manufacturing such an implantation layer, wherein said implantation layer is formed in an implantation step at a predetermined depth of penetration, determined from a top surface of said semiconductor substrate, using a particle beam, by increasing its path distance to a main implantation peak and correspondingly increasing the energy level of said particle beam for producing an undamaged implantation layer having a thickness that is increased significantly compared with the thickness of an implantation layer that would be produced at said predetermined depth of penetration using a particle beam with non-increased path distance and energy level.
摘要:
One embodiment of the invention relates to a method for fabricating a doped semiconductor zone in a semiconductor body. The method includes implanting dopant particles via one side into the semiconductor body or applying a layer containing dopant particles to one side of the semiconductor body. The method also includes irradiating the semiconductor body via the one side with further particles at least in the region containing the dopant particles. The method finally includes carrying out a thermal treatment by means of which the semiconductor body is heated, at least in the region containing the dopant particles, to a predetermined temperature in order to activate the implanted dopant particles, said temperature being less than 700° C.
摘要:
A semiconductor device in one embodiment has a first connection region, a second connection region and a semiconductor volume arranged between the first and second connection regions. Provision is made, within the semiconductor volume, in the vicinity of the second connection region, of a field stop zone for spatially delimiting a space charge zone that can be formed in the semiconductor volume, and of an anode region adjoining the first connection region. The dopant concentration profile within the semiconductor volume is configured such that the integral of the ionized dopant charge over the semiconductor volume, proceeding from an interface of the anode region which faces the second connection region, in the direction of the second connection region, reaches a quantity of charge corresponding to the breakdown charge of the semiconductor device only near the interface of the field stop zone which faces the second connection region.
摘要:
A semiconductor body of a semiconductor device includes a doped layer of a first conductivity type and one or more doped zones of a second conductivity type. The one or more doped zones are formed between the doped layer and the first surface of a semiconductor body. Trench structures extend from one of the first and the second opposing surface into the semiconductor body. The trench structures are arranged between portions of the semiconductor body which are electrically connected to each other. The trench structures may be arranged for mitigating mechanical stress, locally controlling charge carrier mobility, locally controlling a charge carrier recombination rate and/or shaping buried diffusion zones.
摘要:
A semiconductor device according to the invention has a first connection region, a second connection region and a semiconductor volume arranged between the first and second connection regions. Provision is made, within the semiconductor volume, in the vicinity of the second connection region, of a field stop zone for spatially delimiting a space charge zone that can be formed in the semiconductor volume, and of an anode region adjoining the first connection region. The dopant concentration profile within the semiconductor volume is configured such that the integral of the ionized dopant charge over the semiconductor volume, proceeding from an interface of the anode region which faces the second connection region, in the direction of the second connection region, reaches a quantity of charge corresponding to the breakdown charge of the semiconductor device only near the interface of the field stop zone which faces the second connection region.
摘要:
A method for fabricating a semiconductor body is presented. The semiconductor body includes a p-conducting zone, an n-conducting zone and a pn junction in a depth T1 in the semiconductor body between the p-conducting zone and the n-conducting zone. The method includes providing the semiconductor body, producing the p-doped zone by the diffusion of an impurity that forms an acceptor in a first direction into the semiconductor body, and producing the n-conducting zone by the implantation of protons in the first direction into the semiconductor body into a depth T2>T1 and the subsequent heat treatment of the semiconductor body in order to form hydrogen-induced donors.
摘要:
A semiconductor body of a semiconductor device includes a doped layer of a first conductivity type and one or more doped zones of a second conductivity type. The one or more doped zones are formed between the doped layer and the first surface of a semiconductor body. Trench structures extend from one of the first and the second opposing surface into the semiconductor body. The trench structures are arranged between portions of the semiconductor body which are electrically connected to each other. The trench structures may be arranged for mitigating mechanical stress, locally controlling charge carrier mobility, locally controlling a charge carrier recombination rate and/or shaping buried diffusion zones.
摘要:
A semiconductor device in one embodiment has a first connection region, a second connection region and a semiconductor volume arranged between the first and second connection regions. Provision is made, within the semiconductor volume, in the vicinity of the second connection region, of a field stop zone for spatially delimiting a space charge zone that can be formed in the semiconductor volume, and of an anode region adjoining the first connection region. The dopant concentration profile within the semiconductor volume is configured such that the integral of the ionized dopant charge over the semiconductor volume, proceeding from an interface of the anode region which faces the second connection region, in the direction of the second connection region, reaches a quantity of charge corresponding to the breakdown charge of the semiconductor device only near the interface of the field stop zone which faces the second connection region.
摘要:
A method for fabricating a semiconductor body is presented. The semiconductor body includes a p-conducting zone, an n-conducting zone and a pn junction in a depth T1 in the semiconductor body between the p-conducting zone and the n-conducting zone. The method includes providing the semiconductor body, producing the p-doped zone by the diffusion of an impurity that forms an acceptor in a first direction into the semiconductor body, and producing the n-conducting zone by the implantation of protons in the first direction into the semiconductor body into a depth T2>T1 and the subsequent heat treatment of the semiconductor body in order to form hydrogen-induced donors.