摘要:
The present invention provides a test mode section for facilitating a worst case product test sequence for signal margin to ensure full product functionality over the entire component lifetime taking all aging effects into account. A semiconductor memory test mode configuration includes a first capacitor for storing digital data and connecting a cell plate line to a first bit line through a first select transistor. The first select transistor activated through a connection to a word line. A second capacitor stores digital data and connects the cell plate line to a second bit line through a second select transistor. The second select transistor is activated through a connection to the word line. A sense amplifier is connected to the first and second bit lines and measures a differential read signal on the first and second bit lines. A third transistor transfers charge between the first and second bit lines third to reduce the differential read signal.
摘要:
A data storage device comprises a controller, a FeRAM memory unit, and a flash memory unit having a much higher data storage capacity than the FeRAM memory unit. Initially, when data is received by the data storage device, the controller stores it in the FeRAM memory unit. This can be done very quickly, since FeRAM devices have a high write rate. Subsequently, the controller transfers the data to the flash memory unit. Thus, the data storage device combines the high storage rate ability of FeRAM devices and the high storage capacity of flash memory devices.
摘要:
The present invention includes a ferro fuse cell comprising a ferroelectric storage capacitor electrically connected to a plate on one side and to a sense amplifier on the other side. A ferroelectric measurement capacitor is electrically connected between the ferroelectric storage capacitor and the sense amplifier.
摘要:
A test circuit for testing differential read signals during a memory access is disclosed. The test circuit is coupled to a pair of bit lines. During a read access, a selected memory cell produces a differential read signal on the bit lines. When the test circuit is activated, the magnitude of the differential read signal is varied. This enables easy testing of read signal margins in, for example, memory ICs.
摘要:
The present invention provides a semiconductor memory test mode configuration. A first capacitor stores digital data and connects a cell plate line to a first bit-line through a first select transistor. The first select transistor is activated through a connection to a word line. At least one reference capacitor provides a reference voltage to a reference bit-line. A sense amplifier is connected to the first and reference bit-lines and measures a differential read signal on the first and reference bit-lines. A charge path reduces the differential read signal to determine the signal margin of the semiconductor memory.
摘要:
A memory cell signal window testing apparatus 101 and method for testing the signal window of a memory are disclosed. First data is written to a memory cell during a write cycle. A low cell signal is read from the memory cell during a first read cycle. A comparison is made between the low signal and a low reference signal. The result of the comparison is stored in a first storage register. Second data is then written to the memory cell during a write cycle. A high cell signal is read from the memory cell during a second read cycle. A comparison is made between the high cell signal and a high reference signal. The result of the comparison is stored in a second storage register. The results in the first and second storage registers are compared and an output is provided indicating that the memory cell has failed the test if the comparison shows that both the low cell signal is higher than the low reference signal and the high cell signal is lower than the high reference signal.
摘要:
A semiconductor memory comprises a first capacitor for storing digital data connecting a cell plate line to a first bit-line through a first select transistor. The first select transistor is activated through a connection to a word line. At least one reference capacitor provides a reference voltage to a reference bit-line. A sense amplifier connected to the first and reference bit-lines measures a differential read signal on the first and reference bit-lines. A toggle flip flop alternately changes the polarization of charge stored on the reference capacitors.
摘要:
A memory cell signal window testing apparatus 101 and method for testing the signal window of a memory are disclosed. First data is written to a memory cell during a write cycle. A low cell signal is read from the memory cell during a first read cycle. A comparison is made between the low signal and a low reference signal. The result of the comparison is stored in a first storage register. Second data is then written to the memory cell during a write cycle. A high cell signal is read from the memory cell during a second read cycle. A comparison is made between the high cell signal and a high reference signal. The result of the comparison is stored in a second storage register. The results in the first and second storage registers are compared and an output is provided indicating that the memory cell has failed the test if the comparison shows that both the low cell signal is higher than the low reference signal and the high cell signal is lower than the high reference signal.
摘要:
The present invention includes a ferro fuse cell comprising a ferroelectric storage capacitor electrically connected to a plate on one side and to a sense amplifier on the other side. A ferroelectric measurement capacitor is electrically connected between the ferroelectric storage capacitor and the sense amplifier.
摘要:
A chained memory IC in which a dual voltage scheme is used for operating the wordlines is described. During standby mode, the wordlines are maintained at a first logic 1 voltage level. To prepare for a memory access, the non-selected wordlines are driven to a boosted voltage while the selected wordline is driven to ground. The first logic 1 voltage level is less than the boosted voltage. This reduces the stress on the gate oxide of the transistors, thus improving reliability of the memory IC.