摘要:
Output beam parameters of a gas discharge laser are stabilized by maintaining a molecular fluorine component at a predetermined partial pressure using a gas supply unit and a processor. The molecular fluorine is subject to depletion within the discharge chamber. Gas injections including molecular fluorine can increase the partial pressure of molecular fluorine by a selected amount. The injections can be performed at selected intervals to maintain the constituent gas substantially at the initial partial pressure. The amount per injection and/or the interval between injections can be varied, based on factors such as driving voltage and a calculated amount of molecular fluorine in the discharge chamber. The driving voltage can be in one of multiple driving voltage ranges that are adjusted based on system aging. Within each range, gas injections and gas replacements can be performed based on, for example, total applied electrical energy or time/pulse count.
摘要:
A method and apparatus is provided for stabilizing output beam parameters of a gas discharge laser by maintaining a molecular fluorine component of the laser gas mixture at a predetermined partial pressure using a gas supply unit and a processor. The molecular fluorine is provided at an initial partial pressure and is subject to depletion within the laser discharge chamber. Injections of gas including molecular fluorine are performed each to increase the partial pressure of molecular fluorine by a selected amount in the laser chamber preferably less than 0.2 mbar per injection, or 7% of an amount of F2 already within the laser chamber. A number of successive injections may be performed at selected intervals to maintain the constituent gas substantially at the initial partial pressure for maintaining stable output beam parameters. The amount per injection and/or the interval between injections may be varied based on the measured value of the driving voltage and/or a calculated amount of the molecular fluorine in the discharge chamber. The driving voltage is preferably determined to be in one of multiple driving voltage ranges that are adjusted based on the aging of the system. Within each range, gas injections and gas replacements are preferably performed based on total applied electrical energy to the discharge and/or alternatively, on time and/or pulse count.
摘要:
Output beam parameters of a gas discharge laser are stabilized by maintaining a molecular fluorine component at a predetermined partial pressure using a gas supply unit and a processor. The molecular fluorine is subject to depletion within the discharge chamber. Gas injections including molecular fluorine can increase the partial pressure of molecular fluorine by a selected amount. The injections can be performed at selected intervals to maintain the constituent gas substantially at the initial partial pressure. The amount per injection and/or the interval between injections can be varied, based on factors such as driving voltage and a calculated amount of molecular fluorine in the discharge chamber. The driving voltage can be in one of multiple driving voltage ranges that are adjusted based on system aging. Within each range, gas injections and gas replacements can be performed based on, for example, total applied electrical energy or time/pulse count.
摘要:
A tunable laser system includes a gain medium and an optical resonator for generating a laser beam, and a spectral narrowing and tuning unit within the resonator. A detection and control unit controls a relative wavelength of the laser system. A wavelength calibration module calibrates the detection and control unit. The module contains more than one species each having an optical transition line within the tuning spectrum of the laser. A beam portion of the narrowed emission from the laser is directed through the wavelength calibration module and a beam portion is directed through the detection and control unit when the laser beam is scanned through the optical transition line of each of the species within the module. The detection and control unit is monitored and calibrated during the scanning.
摘要:
A method and apparatus is provided for stabilizing output beam parameters of a gas discharge laser by maintaining a constituent gas of the laser gas mixture at a predetermined partial pressure using a gas supply unit and a processor. The constituent gas of the laser gas mixture is provided at an initial partial pressure and the constituent gas is subject to depletion within the laser discharge chamber. Injections of the constituent gas are performed each to increase the partial pressure by a selected amount in the discharge chamber preferably less than 0.2 mbar per injection. A number of successive injections is performed at selected intervals to maintain the constituent gas substantially at the initial partial pressure for maintaining stable output beam parameters. The amount per injection and/or the interval between injections may be varied based on the measured value of the driving voltage and/or a calculated amount of the constituent gas in the discharge chamber. The driving voltage is determined to be in one of multiple driving voltage ranges that are adjusted based on the aging of the system. Within each range, gas injections and gas replacements are preferably performed based on total applied electrical energy to the discharge and/or alternatively, on time and/or pulse count.
摘要:
A method and apparatus is provided for stabilizing output beam parameters of a gas discharge laser by maintaining a constituent gas of the laser gas mixture at a predetermined partial pressure using a gas supply unit and a processor. The constituent gas of the laser gas mixture is provided at an initial partial pressure and the constituent gas is subject to depletion within the laser discharge chamber. Injections of the constituent gas are performed each to increase the partial pressure by a selected amount in the discharge chamber preferably less than 0.2 mbar per injection. A number of successive injections is performed at selected intervals to maintain the constituent gas substantially at the initial partial pressure for maintaining stable output beam parameters. The amount per injection and/or the interval between injections may be varied based on the measured value of the driving voltage and/or a calculated amount of the constituent gas in the discharge chamber. The driving voltage is determined to be in one of multiple driving voltage ranges that are adjusted based on the aging of the system. Within each range, gas injections and gas replacements are preferably performed based on total applied electrical energy to the discharge and/or alternatively, on time and/or pulse count.
摘要:
A method and apparatus is provided for stabilizing output beam parameters of a gas discharge laser by maintaining a constituent gas of the laser gas mixture at a predetermined partial pressure using a gas supply unit and a processor. The constituent gas of the laser gas mixture is provided at an initial partial pressure and the constituent gas is subject to depletion within the laser discharge chamber. Injections of the constituent gas are performed each to increase the partial pressure by a selected amount in the discharge chamber preferably less than 0.2 mbar per injection. A number of successive injections is performed at selected intervals to maintain the constituent gas substantially at the initial partial pressure for maintaining stable output beam parameters. The amount per injection and/or the interval between injections may be varied based on the measured value of the driving voltage and/or a calculated amount of the constituent gas in the discharge chamber. The driving voltage is determined to be in one of multiple driving voltage ranges that are adjusted based on the aging of the system. Within each range, gas injections and gas replacements are preferably performed based on total applied electrical energy to the discharge and/or alternatively, on time and/or pulse count.
摘要:
A method and apparatus is provided for stabilizing output beam parameters of a gas discharge laser by maintaining a constituent gas of the laser gas mixture at a predetermined partial pressure using a gas supply unit and a processor. The constituent gas of the laser gas mixture is provided at an initial partial pressure and the constituent gas is subject to depletion within the laser discharge chamber. Injections of the constituent gas are performed each to increase the partial pressure by a selected amount in the discharge chamber preferably less than 0.2 mbar per injection. A number of successive injections is performed at selected intervals to maintain the constituent gas substantially at the initial partial pressure for maintaining stable output beam parameters. The amount per injection and/or the interval between injections may be varied based on the measured value of the driving voltage and/or a calculated amount of the constituent gas in the discharge chamber. The driving voltage is determined to be in one of multiple driving voltage ranges that are adjusted based on the aging of the system. Within each range, gas injections and gas replacements are preferably performed based on total applied electrical energy to the discharge and/or alternatively, on time and/or pulse count.
摘要:
Laser systems have a line-narrowed master oscillator and a power oscillator for amplifying the output of the master oscillator. The power oscillator includes optical arrangements for limiting the bandwidth of radiation that can be amplified. The limited amplification bandwidth of the power oscillator is relatively broad compared to that of the output of the master oscillator, but narrower than would be the case without the bandwidth limiting arrangements. The bandwidth narrowing arrangements of the power oscillator function primarily to restrict the bandwidth of amplified spontaneous emission generated by the power oscillator.
摘要:
Laser systems have a line-narrowed master oscillator and a power oscillator for amplifying the output of the master oscillator. The power oscillator includes optical arrangements for limiting the bandwidth of radiation that can be amplified. The limited amplification bandwidth of the power oscillator is relatively broad compared to that of the output of the master oscillator, but narrower than would be the case without the bandwidth limiting arrangements. The bandwidth narrowing arrangements of the power oscillator function primarily to restrict the bandwidth of amplified spontaneous emission generated by the power oscillator.