摘要:
In a magnetoresistive (MR) read sensor in which the MR layer is transversely biased by a soft magnetic layer separated from the MR layer by a nonmagnetic spacer layer an antiferromagnetic stabilization layer of NiO provides a stabilizing exchange-coupled magnetic field to the transverse bias layer insuring that the transverse bias layer is fully saturated in a preferred direction during sensor operation.
摘要:
In a magnetoresistive (MR) read sensor in which the MR layer is transversely biased by a soft magnetic layer separated from the MR layer by a nonmagnetic spacer layer an antiferromagnetic stabilization layer of NiO provides a stabilizing exchange-coupled magnetic field to the transverse bias layer insuring that the transverse bias layer is fully saturated in a preferred direction during sensor operation.
摘要:
First and second shield layers of a read head are constructed of a lamination of NiMn and Fe-based layers to improve the performance of the shield layers when they are subjected to high external fields, such as from the pole tips of a write head combined therewith. Without lamination with one or more NiMn layers, many shield materials do not return to the same domain configuration after excitation from an external field. The result is that the Fe-based material assumes a different domain configuration after each excitation which changes the bias point of the MR sensor of the read head. By laminating with NiMn, the uniaxial anisotropy of the material can be increased to provide uniform domain configuration and exchange pinning between shield material NiMn returns the material to the same configuration after each external field excitation. The invention further provides fine tunings of the magnetic properties of the shield layer by various combinations of the Fe-based layers and/or the NiMn layer with NiFe layers.
摘要:
First and second shield layers of a read head are constructed of a lamination of NiMn and Fe-based layers to improve the performance of the shield layers when they are subjected to high external fields, such as from the pole tips of a write head combined therewith. Without lamination with one or more NiMn layers, many shield materials do not return to the same domain configuration after excitation from an external field. The result is that the Fe-based material assumes a different domain configuration after each excitation which changes the bias point of the MR sensor of the read head. By laminating with NiMn, the uniaxial anisotropy of the material can be increased to provide uniform domain configuration and exchange pinning between shield material NiMn returns the material to the same configuration after each external field excitation. The invention further provides fine tunings of the magnetic properties of the shield layer by various combinations of the Fe-based layers and/or the NiMn layer with NiFe layers.
摘要:
An improved spin valve (SV) magnetoresistive element has its free ferromagnetic layer in the form of a central active region with defined edges and end regions that are contiguous with and abut the edges of the central active region. A layer of antiferromagnetic material, preferably a nickel-manganese (Ni--Mn) alloy, is formed on and in contact with the ferromagnetic material in the end regions for exchange coupling with the end regions to provide them with a longitudinal bias of their magnetizations. The pinned ferromagnetic layer in the SV element is pinned by exchange coupling with a different layer of antiferromagnetic material, preferably an iron-manganese (Fe--Mn) alloy. This material has a substantially different Neel temperature from that of the antiferromagnetic material on the end regions. The process for making the SV element includes heating to different predetermined temperatures in the presence of an applied magnetic field to orient the magnetizations of the free and pinned layers in the proper direction. The SV element may be used as a sensor for reading data in magnetic recording systems.
摘要:
The invention provides a tunneling magnetoresistance (TMR) read sensor with a long diffusion path and ex-situ interfaces in a sense layer structure. The sense layer structure comprises a first sense layer preferably formed of a ferromagnetic Co—Fe film, a second sense layer preferably formed of a ferromagnetic Co—Fe—B film, and a third sense layer preferably formed of a ferromagnetic Ni—Fe film. The sense layer structure has a long diffusion path (defined as a total thickness of the first and second sense layers) and ex-situ interfaces for suppressing unwanted diffusions of Ni atoms. Alternatively, the sense layer structure comprises a first sense layer preferably formed of a ferromagnetic Co—Fe film, a second sense layer preferably formed of a ferromagnetic Co—Fe—B film, a third sense layer preferably formed of a ferromagnetic Co—Fe—B—Hf film, and a fourth sense layer preferably formed of a ferromagnetic Ni—Fe film.
摘要:
A magnetic structure in one embodiment includes a tunnel barrier layer; a free layer; and a buffer layer between the tunnel barrier layer and the free layer, wherein a cross sectional area of the tunnel barrier layer in a direction parallel to a plane of deposition thereof is greater than a cross sectional area of the free layer in a direction parallel to a plane of deposition thereof, wherein a cross sectional area of the buffer layer in a direction parallel to a plane of deposition thereof is greater than a cross sectional area of the free layer in the direction parallel to the plane of deposition thereof. Additional systems and methods are also presented.
摘要:
A current-perpendicular-to-plane (CPP) magnetoresistance sensor and a method for forming a current-perpendicular-to-plane (CPP) magnetoresistance sensor. The method includes providing a ferromagnetic shield layer and disposing one or more seed layers on the ferromagnetic shield layer. The method also includes disposing a pinning layer on the one or more seed layers, wherein the pinning layer excludes PtMn, and disposing a pinned layer on the pinning layer. The shield layer, each of the one or more seed layers, the pinning layer, and the pinned layer are comprised of compounds having face-centered-cubic structures.
摘要:
A magnetic head in one embodiment includes first and second ferromagnetic shield layers, first and second nonmagnetic read-gap layers positioned between the first and second ferromagnetic shield layers, a sensor used in a current-in-plane (CIP) mode, first and second longitudinal bias layers electrically coupled with the sensor, and first and second conducting layers electrically coupled with the first and second longitudinal bias layers, respectively.
摘要:
A method and apparatus providing a stabilized top shield in a read head used for the longitudinal or perpendicular magnetic recording is disclosed. The top shield includes a laminate structure including at least three layers of ferromagnetic and antiferromagnetic films in a frame. Unidirectional anisotropy induced at the interface of the ferromagnetic and antiferromagnetic films is optimized by selecting suitable compositions and thicknesses to achieve the stabilization of the top shield while maintaining high permeability. In an alternative method, the top shield includes a ferromagnetic Ni—Fe film in a central region and multiple layers comprising ferromagnetic Co—Fe and Ni—Fe layers and an antiferromagnetic layer. Unidirectional anisotropy induced at the interfaces of ferromagnetic and antiferromagnetic layers by selecting suitable compositions and thicknesses of the ferromagnetic and antiferromagnetic layers to achieve the stabilization of the top shield through magnetostatic interactions between the central and side regions.