摘要:
A lithographic projection apparatus is provided with an optical system built into the wafer table for producing an image of a wafer mark that is provided on the back side of the wafer. The image is located at the plane of the front side of the wafer and can be viewed by an alignment system from the front side of the wafer. Simultaneous alignment between marks on the back and front of the wafer and a mask can be performed using a pre-existing alignment system. The lithographic projection apparatus is further provided with immersion system for providing a fluid between the lens and the substrate.
摘要:
A substrate bonding system has a first and a second substrate table for holding a first substrate and a second substrate, respectively, and a controller. The first substrate includes a first device having first contact pads and the second substrate a second device having second contact pads. The wafer bonding system is arranged to bond the first and second device in such a way that a circuit may be formed by the first and second device. The first and second substrate tables each include a position sensor arranged to measure an optical signal generated on an alignment marker of the first and second substrate, respectively. The first and second substrate tables include a first and second actuator respectively that is arranged to alter a position and orientation of the respective substrate table.
摘要:
To align between layers having a large Z separation, an alignment system which illuminates reference markers with normally incident radiation is used. The alignment system has an illumination system that is telecentric on the substrate side.
摘要:
A method of calibrating a front to backside alignment capable lithographic apparatus. The method includes attaching a substrate having a plurality of alignment marks to a carrier, the substrate being arranged such that the alignment marks face towards the carrier; reducing the thickness of the substrate; using an alignment system of the apparatus to measure the positions of images of alignment marks formed by optics in a substrate table of the apparatus; projecting a pattern onto the substrate, the position of the pattern being determined according to the measured positions of the alignment marks; measuring the positions of the projected pattern and the alignment marks provided on the opposite side of the substrate, the position of the alignment marks provided on the opposite side of the substrate being measured by the alignment system directing radiation through the substrate; and comparing the measured positions in order to determine an overlay error.
摘要:
A method according to one embodiment of the invention may be used in determining relative positions of developed patterns on a substrate (exposed e.g. using the step mode). Such a method uses reference marks which are located within or even superimposed on device patterns. Also disclosed is a mask of a lithographic projection apparatus including reference marks that may be used in such a method.
摘要:
A device manufacturing method capable of imaging structures on both sides of a substrate, is presented herein. One embodiment of the present invention comprises a device manufacturing method that etches reversed alignment markers on a first side of a substrate to a depth of 10 μm, the substrate is flipped over, and bonded to a carrier wafer and then lapped or ground to a thickness of 10 μm to reveal the reversed alignment markers as normal alignment markers. The reversed alignment markers may comprise normal alignment patterns overlaid with mirror imaged alignment patterns.
摘要:
A device manufacturing method capable of imaging structures on both sides of a substrate, is presented herein. One embodiment of the present invention comprises a device manufacturing method that etches reversed alignment markers on a first side of a substrate to a depth of 10 μm, the substrate is flipped over, and bonded to a carrier wafer and then lapped or ground to a thickness of 10 μm to reveal the reversed alignment markers as normal alignment markers. The reversed alignment markers may comprise normal alignment patterns overlaid with mirror imaged alignment patterns.
摘要:
The present invention relates to a device manufacturing method wherein a plurality of front side marks are manufactured on the front side of the substrate. These marks are used to locally align the substrate when exposing. After certain processing steps, the positions of the front side marks are measured and compared with respect to their original positions. The measured position changes of the front side marks, i.e. their behaviour, can then be analyzed. The original positions and actual positions are defined with respect to a nominal grid which is defined using global alignment marks which are positioned at the back side of the substrate. Because the global alignment marks are positioned at the back side, they are not affected by any processing step.
摘要:
A substrate bonding system has a first and a second substrate table for holding a first substrate and a second substrate, respectively, and a controller. The first substrate includes a first device having first contact pads and the second substrate a second device having second contact pads. The wafer bonding system is arranged to bond the first and second device in such a way that a circuit may be formed by the first and second device. The first and second substrate tables each include a position sensor arranged to measure an optical signal generated on an alignment marker of the first and second substrate, respectively. The first and second substrate tables include a first and second actuator respectively that is arranged to alter a position and orientation of the respective substrate table.
摘要:
A device manufacturing method capable of imaging structures on one side of a substrate aligned to markers on the other side, is presented herein. One embodiment of the present invention comprises providing a first substrate having first and second surfaces, patterning the first surface of the substrate with at least one reversed alignment marker, providing a protective layer over the alignment marker, and bonding the first surface of the first substrate to a second substrate. The embodiment further includes locally etching the first substrate as far as the protective layer to form a trench around the reversed alignment marker, and forming at least one patterned layer on the second surface using a lithographic projection apparatus having a front-to-backside alignment system while aligning the substrate to the alignment markers revealed in each trench.