摘要:
A system for reducing carbon dioxide emissions from gasses generated in burning fossil fuel, includes a vessel, separator and reheater. The upper portion of the vessel receives downward flowing, first type solid particles capable of absorbing heat from upward flowing gasses and second type solid particles capable of capturing carbon dioxide from the gasses. The separator separates the second type solid particles with the captured carbon dioxide from the gasses discharged from the first vessel discharge, and directs the separated second type solid particles with the captured carbon dioxide to a separator discharge. The reheater directs the first type solid particles and the second type solid particles with the captured carbon dioxide in a downwardly flow to a first reheater discharge, such that heat from the first type solid particles causes the captured carbon dioxide to be released from the second type solid particles.
摘要:
A gasifier 10 includes a first chemical process loop 12 having an exothermic oxidizer reactor 14 and an endothermic reducer reactor 16. CaS is oxidized in air in the oxidizer reactor 14 to form hot CaSO4 which is discharged to the reducer reactor 16. Hot CaSO4 and carbonaceous fuel received in the reducer reactor 16 undergo an endothermic reaction utilizing the heat content of the CaSO4, the carbonaceous fuel stripping the oxygen from the CaSO4 to form CaS and a CO rich syngas. The CaS is discharged to the oxidizer reactor 14 and the syngas is discharged to a second chemical process loop 52. The second chemical process loop 52 has a water-gas shift reactor 54 and a calciner 42. The CO of the syngas reacts with gaseous H2O in the shift reactor 54 to produce H2 and CO2. The CO2 is captured by CaO to form hot CaCO3 in an exothermic reaction. The hot CaCO3 is discharged to the calciner 42, the heat content of the CaCO3 being used to strip the CO2 from the CaO in an endothermic reaction in the calciner, with the CaO being discharged from the calciner 42 to the shift reactor 54.
摘要:
A gasifier 10 includes a first chemical process loop 12 having an exothermic oxidizer reactor 14 and an endothermic reducer reactor 16. CaS is oxidized in air in the oxidizer reactor 14 to form hot CaSO4 which is discharged to the reducer reactor 16. Hot CaSO4 and carbonaceous fuel received in the reducer reactor 16 undergo an endothermic reaction utilizing the heat content of the CaSO4, the carbonaceous fuel stripping the oxygen from the CaSO4 to form CaS and a CO rich syngas. The CaS is discharged to the oxidizer reactor 14 and the syngas is discharged to a second chemical process loop 52. The second chemical process loop 52 has a water-gas shift reactor 54 and a calciner 42. The CO of the syngas reacts with gaseous H2O in the shift reactor 54 to produce H2 and CO2. The CO2 is captured by CaO to form hot CaCO3 in an exothermic reaction. The hot CaCO3 is discharged to the calciner 42, the heat content of the CaCO3 being used to strip the CO2 from the CaO in an endothermic reaction in the calciner, with the CaO being discharged from the calciner 42 to the shift reactor 54.
摘要:
A gasifier 10 includes a first chemical process loop 12 having an exothermic oxidizer reactor 14 and an endothermic reducer reactor 16. CaS is oxidized in air in the oxidizer reactor 14 to form hot CaSO4 which is discharged to the reducer reactor 16. Hot CaSO4 and carbonaceous fuel received in the reducer reactor 16 undergo an endothermic reaction utilizing the heat content of the CaSO4, the carbonaceous fuel stripping the oxygen from the CaSO4 to form CaS and a CO rich syngas. The CaS is discharged to the oxidizer reactor 14 and the syngas is discharged to a second chemical process loop 52. The second chemical process loop 52 has a water-gas shift reactor 54 and a calciner 42. The CO of the syngas reacts with gaseous H2O in the shift reactor 54 to produce H2 and CO2. The CO2 is captured by CaO to form hot CaCO3 in an exothermic reaction. The hot CaCO3 is discharged to the calciner 42, the heat content of the CaCO3 being used to strip the CO2 from the CaO in an endothermic reaction in the calciner, with the CaO being discharged from the calciner 42 to the shift reactor 54.
摘要:
A gasifier 10 includes a first chemical process loop 12 having an exothermic oxidizer reactor 14 and an endothermic reducer reactor 16. CaS is oxidized in air in the oxidizer reactor 14 to form hot CaSO4 which is discharged to the reducer reactor 16. Hot CaSO4 and carbonaceous fuel received in the reducer reactor 16 undergo an endothermic reaction utilizing the heat content of the CaSO4, the carbonaceous fuel stripping the oxygen from the CaSO4 to form CaS and a CO rich syngas. The CaS is discharged to the oxidizer reactor 14 and the syngas is discharged to a second chemical process loop 52. The second chemical process loop 52 has a water-gas shift reactor 54 and a calciner 42. The CO of the syngas reacts with gaseous H2O in the shift reactor 54 to produce H2 and CO2. The CO2 is captured by CaO to form hot CaCO3 in an exothermic reaction. The hot CaCO3 is discharged to the calciner 42, the heat content of the CaCO3 being used to strip the CO2 from the CaO in an endothermic reaction in the calciner, with the CaO being discharged from the calciner 42 to the shift reactor 54.
摘要:
A hot solids process selectively operable for purposes of generating at least one predetermined output based on what the specific nature of the primary purpose of the hot solids process is for which the at least one predetermined output that is selected from a multiplicity of predetermined outputs, such as H2 and CO2, is being produced, and wherein such primary purpose of the hot solids process is designed to be pre-selected from a group of primary purposes of the hot solids process that includes at least two of the generation of H2 for electric power purposes, the generation of SynGas for electric power production as well as for other industrial uses, the production of steam for electric power generation as well as for other uses, the production of process heat, the production of CO2 for agricultural purposes, and the generation of a feedstock such as H2 for use for the production of liquid hydrocarbons.
摘要:
A temperature measuring device for a gasifier of a gasifier system wherein the gasifier has a through opening formed thereon. The temperature measuring device includes a slag shield mounted on the gasifier so that a portion of the slag shield extends into the interior of the gasifier through the opening with which the gasifier is provided for this purpose, and a temperature measuring instrument mounted in supported relation within the slag shield so that a line-of-sight exists from the temperature measuring instrument into the interior of the gasifier whereat the temperature is desired to be measured. The slag shield is designed to protect the temperature measuring instrument from the slag flow within the gasifier. The temperature measuring instrument further includes cooling means for cooling at least that portion of the slag shield that extends into the interior of the gasifier, and purge gas means for supplying a flow of purge gas in surrounding relation to the temperature measuring instrument to purge particulate matter therefrom in order to ensure that the line-of-sight between the temperature measuring instrument and the interior of the gasifier remains unobscured.
摘要:
A combustor 110 combust a fluidized bed of fossil fuel 114, 114′ to heat a working fluid 102 and generate flue gas 104. An air preheater 144 has first and second gas passageways 144a, 144b for respectively directing the generated flue gas 150 and another gas 250 with captured CO2 generated by combustion outside of the combustor 110. When operated in a non-CO2 capture, the air preheater 144 receives the flue gas 150, but not the other gas 250, and the first gas passageway 144a directs the flue gas 150 so as to preheat the air 188. However, when operated in the CO2 capture mode, the air preheater 144 receives the flue gas 150 and the other gas 250, and the second gas passageway 144b also directs the other gas 250 so as to preheat the air 188′. In either mode, the preheated air 188, 188′ is applied by the combustor 110 to fluidize a bed of fossil fuel 114, 114′.
摘要:
A high performance, multi-stage, pressurized, airblown, entrained flow coal gasifier system and a method of operating such a gasifier system for generating therewithin fuel gas from coal. The subject gasifier system includes an outer, pressure containing vessel surrounding an inner, water-cooled vessel wherein the gasification reaction, through which the fuel gas is generated from coal, takes place. The inner, water-cooled vessel embodies a first stage within which the high temperatures required for the gasification reactions to take place as well as for slagging are generated from the combustion of char, a second stage within which the char is gasified to generate the subject fuel gas, and a third stage within which coal is devolatilized to produce the char for the first stage and the second stage and with a concomitant quenching being effected of the fuel gas as the latter flows through the third stage of the inner water-cooled vessel.
摘要:
A high performance, multi-stage, pressurized, airblown, entrained flow coal gasifier system and a method of operating such a gasifier system for generating therewithin fuel gas from coal. The subject gasifier system includes an outer, pressure containing vessel surrounding an inner, water-cooled vessel wherein the gasification reaction, through which the fuel gas is generated from coal, takes place. The inner, water-cooled vessel embodies a first stage within which the high temperatures required for the gasification reactions to take place as well as for slagging are generated from the combustion of char, a second stage within which the char is gasified to generate the subject fuel gas, and a third stage within which coal is devolatilized to produce the char for the first stage and the second stage and with a concomitant quenching being effected of the fuel gas as the latter flows through the third stage of the inner water-cooled vessel.