摘要:
A method for recording information on a rewritable recording medium includes recording synchronizing signal information in a synchronizing signal portion on the medium, recording data information in a data portion of the medium after the synchronizing signal portion by forming marks in the data portion, and substantially randomly inverting the marks and spaces between the marks each time the information is recorded. The marks for particular areas of the medium are different in a physical property from other areas of the medium and data information is recorded in association with both ends of each of the marks. Upon rewriting of at least the recorded synchronizing signal information, a length of the synchronizing signal portion changes and a start position of the synchronizing signal portion changes, and wherein a change of the synchronizing signal information start position is smaller than a change of the length of the synchronizing signal portion.
摘要:
A method for recording information on a rewritable recording medium includes recording synchronizing signal information in a synchronizing signal portion on the medium, recording data information in a data portion of the medium after the synchronizing signal portion by forming marks in the data portion, and substantially randomly inverting the marks and spaces between the marks each time the information is recorded. The marks for particular areas of the medium are different in a physical property from other areas of the medium and data information is recorded in association with both ends of each of the marks. Upon rewriting of at least the recorded synchronizing signal information, a length of the synchronizing signal portion changes and a start position of the synchronizing signal portion changes, and wherein a change of the synchronizing signal information start position is smaller than a change of the length of the synchronizing signal portion.
摘要:
In size measurement of a semiconductor device, profiles of a pattern formed in a resist process are determined through an exposure/development simulation in respect of individual different combinations of exposure values and focus values to form a profile matrix and scattered light intensity distributions corresponding to the individual profiles are determined through calculation to form a scattered light library, thereby forming a profile library consisting of the profile matrix and scattered light library. A scattered light intensity distribution of an actually measured pattern is compared with the scattered light intensity distributions of the scattered light library and a profile of profile matrix corresponding to a scattered light intensity distribution of scattered light library having the highest coincidence is determined as a three-dimensional shape of the actually measured pattern.
摘要:
A method for recording information on a rewritable recording medium includes recording first synchronizing signal information in a first synchronizing signal portion on the rewritable recording medium, recording second synchronizing signal information in a second synchronizing signal portion following the first synchronizing signal portion on the rewritable recording medium, recording data information in a data portion of the rewritable recording medium after the second synchronizing signal portion by forming marks in the data portion. The data information corresponds to both ends of each the marks. The marks and spaces between the marks are substantially randomly inverted each time the information is recorded and a length of the first synchronizing signal portion changes and a start position of the first synchronizing signal portion changes. A change of the start position of the first synchronizing signal portion is smaller than a change of the length of the first synchronizing signal portion.
摘要:
A method for recording information on a rewritable recording medium includes recording first synchronizing signal information in a first synchronizing signal portion on the rewritable recording medium, recording second synchronizing signal information in a second synchronizing signal portion following the first synchronizing signal portion on the rewritable recording medium, recording data information in a data portion of the rewritable recording medium after the second synchronizing signal portion by forming marks in the data portion. The data information corresponds to both ends of each the marks. The marks and spaces between the marks are substantially randomly inverted each time the information is recorded and a length of the first synchronizing signal portion changes and a start position of the first synchronizing signal portion changes. A change of the start position of the first synchronizing signal portion is smaller than a change of the length of the first synchronizing signal portion.
摘要:
The disclosed device, which, using an electron microscope or the like, minutely observes defects detected by an optical appearance-inspecting device or an optical defect-inspecting device, can reliably insert a defect to be observed into the field of an electron microscope or the like, and can be a device of a smaller scale. The electron microscope, which observes defects detected by an optical appearance-inspecting device or by an optical defect-inspecting device, has a configuration wherein an optical microscope that re-detects defects is incorporated, and a spatial filter and a distribution polarization element are inserted at the pupil plane when making dark-field observations using this optical microscope. The electron microscope, which observes defects detected by an optical appearance-inspecting device or an optical defect-inspecting device, has a configuration wherein an optical microscope that re-detects defects is incorporated, and a distribution filter is inserted at the pupil plane when making dark-field observations using this optical microscope.
摘要:
The disclosed device, which, using an electron microscope or the like, minutely observes defects detected by an optical appearance-inspecting device or an optical defect-inspecting device, can reliably insert a defect to be observed into the field of an electron microscope or the like, and can be a device of a smaller scale. The electron microscope (5), which observes defects detected by an optical appearance-inspecting device or by an optical defect-inspecting device, has a configuration wherein an optimal microscope (14) that re-detects defects is incorporated, and a spatial filter and a distribution polarization element are inserted at the pupil plane when making dark-field observations using this optical microscope (14). The electron microscope (5), which observes defects detected by an optical appearance-inspecting device or an optical defect-inspecting device, has a configuration wherein an optimal microscope (14) that re-detects defects is incorporated, and a distribution filter is inserted at the pupil plane when making dark-field observations using this optical microscope (14).
摘要:
To realize a method for detecting variations in conditions (drift of the exposure and drift of the focus) in exposure equipment at a product wafer level in lithography process, the process is specified in such a way that calculation results of feature quantities such as electron beam images, line profiles, dimensions, etc. under various sets of the exposure and the focus are stored as a library, and an electron beam image of the product wafer is compared with these pieces of data in the library so that detection of drifts of the exposure and the focus a check of the results on the screen can easily be performed.
摘要:
An invention being applied is a defect detecting apparatus that has: an illuminating optical system with a laser light source for irradiating a sample on whose surface a pattern is formed with light; a detecting optical system with a sensor for detecting light generated from the sample illuminated by the illuminating optical system; and a signal processing unit that extracts a defect from an image based on the light detected by the detecting optical system, in which an amplification rate of the sensor is dynamically changed during a time when the light is detected by the detecting optical system.
摘要:
A defect inspection method and device for irradiating a linear region on a surface-patterned sample mounted on a planarly movable table, with illumination light from an inclined direction relative to a direction of a line normal to the sample, next detecting in each of a plurality of directions an image of the light scattered from the sample irradiated with the illumination light, then processing signals obtained by the detection of the images of the scattered light, and thereby detecting a defect present on the sample; wherein the step of detecting the scattered light image in the plural directions is performed through elliptical lenses in which elevation angles of the optical axes thereof are different from each other, within one plane perpendicular to a plane formed by the normal to the surface of the table on which to mount the sample and the longitudinal direction of the linear region irradiated with the irradiation light, the elliptical lenses being formed of circular lenses having left and right portions thereof cut.