摘要:
A substrate support stage of a plasma processing device, which stably controls a substrate at a relatively high temperature. The substrate support stage includes an electrostatic attraction plate (14) containing a first electrode for holding a substrate (W) by electrostatic attraction, a second electrode for applying a bias to the substrate (W), and a heater for heating the substrate, a cylindrical flange (13) welded to the lower surface of the electrostatic attraction plate (14) and produced from an alloy having the same heat characteristic as the electrostatic attraction plate (14), and a support stage (10) including an O-ring (12) in a surface facing the lower surface of the flange (13), to which the flange (13) is attached via the O-ring (12), wherein when the bias power to be applied to the substrate (W) is changed, the heater power for heating the substrate (W); is changed so that the temperature of the substrate (W) is constant.
摘要:
An object is to provide a plasma film forming apparatus capable of reducing particles even in the case in which a film is formed by applying a bias to a substrate. In the plasma film forming apparatus in which a bias is applied to a substrate (5) placed on a supporting table (4) in a chamber and forming a thin film on the substrate (5) by using plasma, the supporting table (4) has a columnar supporting table main body (4b) having a contact surface in contact with the substrate (5), the contact surface (4a) having an outer diameter (c) smaller than an outer diameter (W) of the substrate (5); and a flange portion (4c) extended in an outer circumferential direction from a side surface (4d) of the supporting table main body (4b); wherein a predetermined first gap (G1) is formed between the flange portion (4c) and a rear surface of the outer circumference of the substrate (5).
摘要:
An object is to provide an insulating film for a semiconductor device which has characteristics of a low permittivity, a low leakage current, and a high mechanical strength, undergoes less change in these characteristics with the elapse of time, and has an excellent water resistance, as well as to provide a process and an apparatus for producing the insulating film for a semiconductor device, a semiconductor device, and a process for producing the semiconductor device. A gas containing a raw material gas which gasified a predetermined alkylborazine compound is supplied in a chamber (2); an electromagnetic wave is introduced into the chamber (2) using with an inductive coupling type plasma generation mechanism (4, 5, 6) to convert the gas into a plasma; a substrate (8) is placed in a plasma diffusion region of the plasma; gas-phase polymerization is performed with borazine skeletal molecules, as a fundamental unit, dissociated from the alkylborazine compound by the plasma so as to form the insulating film for semiconductor devices on the substrate (8).
摘要:
Disclosed are: a method for producing a silicon nitride film, wherein generation of blisters at the periphery of a substrate is suppressed when a silicon nitride film is formed through application of a bias power; and an apparatus for producing a silicon nitride film. Specifically disclosed are a method and apparatus for producing a silicon nitride film, wherein a silicon nitride film used for a semiconductor element is formed on a substrate by plasma processing. In the method and apparatus for producing a silicon nitride film, a bias is applied to the substrate at time (b1), and a starting material gas SiH4 for the silicon nitride film is started to be supplied at time (b3) after the application of the bias.
摘要:
In order to provide a plasma processing method and a plasma processing system which is capable of embedding a SiN film can be performed by applying bias power, in a plasma processing method for depositing a silicon nitride film on a substrate 21, which is a target for plasma processing, by using plasma of a raw material gas containing silicon and hydrogen and of a gas containing nitrogen, the bias power to inject ions into the substrate 21 is set equal to or higher than a threshold to increase a Si—H bonding amount, thereby reducing compression stress.
摘要:
Disclosed are: a semiconductor light-emitting element which fulfills all of high migration preventing properties, high permeability and low film production cost; a protective film for a semiconductor light-emitting element; and a process for producing the protective film. In a semiconductor light-emitting element comprising multiple semiconductor layers (12-14) formed on a substrate (11) and electrode portions (15, 16) and electrode portions (17, 18) which act as electrodes for the multiple semiconductor layers (12-14), an SiN film (31) having a thickness of 35 nm or more and comprising silicon nitride covers the surrounds of the multiple semiconductor layers (12-14), the electrode portions (15, 16) and the electrode portions (17, 18) and an SiO film (32) having a higher thickness than that of the SiN film (31) and comprising silicon oxide covers the surround of the SiN film (31), as protective films for the semiconductor light-emitting element.
摘要:
Disclosed are: a method for producing a silicon nitride film, wherein generation of blisters at the periphery of a substrate is suppressed when a silicon nitride film is formed through application of a bias power; and an apparatus for producing a silicon nitride film. Specifically disclosed are a method and apparatus for producing a silicon nitride film, wherein a silicon nitride film used for a semiconductor element is formed on a substrate by plasma processing. In the method and apparatus for producing a silicon nitride film, a bias is applied to the substrate at time (b1), and a starting material gas SiH4 for the silicon nitride film is started to be supplied at time (b3) after the application of the bias.
摘要:
Disclosed is a silicon nitride film for a semiconductor element, wherein changes of film stress of the silicon nitride film are suppressed, said silicon nitride film being formed by applying bias power. Also disclosed are a method and an apparatus for manufacturing the silicon nitride film. The silicon nitride film, which is formed on a substrate (19) by plasma processing, and which is to be used in the semiconductor element, has a structure wherein a biased SiN film (31) formed by applying bias to the substrate (19) is sandwiched between an unbiased SiN film (32a) and an unbiased SiN film (32b), which are formed by not applying bias to the substrate (19).
摘要:
Disclosed are: a semiconductor light-emitting element that fulfills all of having high migration prevention, high transmittance, and low film-production cost; the protective film of the semiconductor light-emitting element; and a method for fabricating same. To this end, in the semiconductor light-emitting element-which has: a plurality of semiconductor layers (12-14) formed on a substrate (11); and electrode sections (15, 16) and other electrode sections (17, 18) that are the electrodes of the plurality of semiconductor layers (12-14)—as the protective film thereof, the surroundings of the plurality of semiconductor layers (12-14), the electrode sections (15, 16), and the other electrode sections (17, 18) are covered by a SiN film (21) comprising silicon nitride of which the quantity of Si—H bonds in the film is less than 1.0×1021 bonds/cm3.
摘要:
An object is to provide an insulating film for a semiconductor device which has characteristics of a low permittivity, a low leakage current, and a high mechanical strength, undergoes less change in these characteristics with the elapse of time, and has an excellent water resistance, as well as to provide a process and an apparatus for producing the insulating film for a semiconductor device, a semiconductor device, and a process for producing the semiconductor device. A gas containing a raw material gas which gasified a predetermined alkylborazine compound is supplied in a chamber (2); an electromagnetic wave is introduced into the chamber (2) using with an inductive coupling type plasma generation mechanism (4, 5, 6) to convert the gas into a plasma; a substrate (8) is placed in a plasma diffusion region of the plasma; gas-phase polymerization is performed with borazine skeletal molecules, as a fundamental unit, dissociated from the alkylborazine compound by the plasma so as to form the insulating film for semiconductor devices on the substrate (8).