摘要:
The present invention provides an HDP-CVD tool using simultaneous deposition and sputtering of doped and undoped silicon dioxide capable of excellent gap fill and blanket film deposition on wafers. The tool of the present invention includes: a dual RF zone inductively coupled plasma source; a dual zone gas distribution system; temperature controlled surfaces within the tool; a symmetrically shaped turbomolecular pumped chamber body; a dual cooling zone electrostatic chuck; an all ceramic/aluminum alloy chamber; and a remote plasma chamber cleaning system.
摘要:
The present invention provides an HDP-CVD tool using simultaneous deposition and sputtering of doped and undoped silicon dioxide capable of excellent gap fill and blanket film deposition on wafers having sub 0.5 micron feature sizes having aspect ratios higher than 1.2:1. The system of the present invention includes: a dual RF zone inductively coupled plasma source configuration capable of producing radially tunable ion currents across the wafer; a dual zone gas distribution system to provide uniform deposition properties across the wafer surface; temperature controlled surfaces to improve film adhesion and to control extraneous particle generation; a symmetrically shaped turbomolecular pumped chamber body to eliminate gas flow or plasma ground azimuthal asymmetries; a dual helium cooling zone electrostatic chuck to provide and maintain uniform wafer temperature during processing; an all ceramic/aluminum alloy chamber construction to eliminate chamber consumables; and a remote fluorine based plasma chamber cleaning system for high chamber cleaning rate without chuck cover plates.
摘要:
An improved substrate support and method for operating in which multiple pressure zones are provided on the surface of the substrate support. A seal area is provided between the different zones to allow different gas pressures in the two zones. A higher gas pressure is provided to a zone corresponding to an area of the substrate where greater heat transfer is desired. The gap between the substrate support and the gas pressure are selected to provide the desired amount of heat transfer. Another aspect is limited substrate contact using protrusions, to maximize heat transfer gas flow. A closed loop control system varies the heat transfer gas pressure in accordance with a temperature sensor. For an electrostatic chuck, the dielectric thickness is varied to give a higher electrostatic force at the periphery of the substrate.
摘要:
A susceptor support arm assembly in a substrate processing chamber includes a secure ground connection between the susceptor and ground. An aluminum wire rope is welded to a winged terminal lug which is tightly inserted into a hole in a susceptor hub. The wings of the lug are then welded to the hub. The wire rope, now permanently attached to the susceptor hub, is routed through an opening in the susceptor end of a ceramic susceptor support arm, able to pass the ground end lug of the wire rope, through a channel in the support arm back to the susceptor arm support device, and to ground. The channel in the susceptor arm has grooves in its sides to receive a paddle shaped ceramic cover to enclose the channel and the bottom of the hub end of the susceptor arm. The cover insulates, isolates, and shields the grounding wire and thermocouple leads being routed from the susceptor hub back to the support end of the susceptor arm from exposure to the high intensity radiant energy directed at the back of the susceptor. Conical spring washers and shoulder screws, attach the metallic pieces (e.g. the susceptor hub) to the ceramic susceptor hub arm allowing for the differential thermal expansion between pieces without overstressing the ceramic material clamped. Surface treatment of the metallic pieces enhances their corrosion resistance.