Abstract:
An image sensor with a small circuit area is provided. In the image sensor, a TX decoder which generates transfer signals TX includes a latch circuit. The latch circuit is set when a corresponding row group is selected and when a set signal is set to an “H” level, and is reset when a reset signal is set to an “L” level. The latch circuit serves also as a voltage level shift circuit which converts the “H” level of a signal from a first power supply voltage into a second power supply voltage. Therefore, plural row groups can be selected by setting plural latch circuits. It is not necessary to provide a voltage level shift circuit separately.
Abstract:
An image sensor with a small circuit area is provided. In the image sensor, a TX decoder which generates transfer signals TX includes a latch circuit. The latch circuit is set when a corresponding row group is selected and when a set signal is set to an “H” level, and is reset when a reset signal is set to an “L” level. The latch circuit serves also as a voltage level shift circuit which converts the “H” level of a signal from a first power supply voltage into a second power supply voltage. Therefore, plural row groups can be selected by setting plural latch circuits. It is not necessary to provide a voltage level shift circuit separately.
Abstract:
An entry including multiple bits of unit cells each storing data bit is coupled to a match line. The match line is supplied with a charging current having a restricted current value smaller than a match line current flowing in a one-bit miss state in one entry, but larger than a match line current flowing in an all-bit match state in one entry. A precharge voltage level of a match line is restricted to a voltage level of half a power supply voltage or smaller. Power consumption in a search cycle of a content addressable memory can be reduced, and a search operation speed can be increased.
Abstract:
The semiconductor integrated circuit device includes load circuits and internal voltage generators for generating internal source voltages for driving the load circuits. Each of the internal voltage generators includes a reference voltage generating circuit for generating reference voltages, and regulator circuits for generating the internal source voltages with reference to the reference voltages. The regulator circuit is formed over an SOI substrate and includes a preamplifier circuit for detecting and amplifying a difference between each of the internal source voltages and each of the reference voltages, a main amplifier circuit for amplifying the output of the preamplifier circuit and generating a control signal, and a driver circuit for generating the internal source voltage in response to the control signal. An input stage of the main amplifier circuit is configured by MOS transistors coupling the gates and bodies of the MOS transistors.
Abstract:
The semiconductor integrated circuit device includes load circuits and internal voltage generators for generating internal source voltages for driving the load circuits. Each of the internal voltage generators includes a reference voltage generating circuit for generating reference voltages, and regulator circuits for generating the internal source voltages with reference to the reference voltages. The regulator circuit is formed over an SOI substrate and includes a preamplifier circuit for detecting and amplifying a difference between each of the internal source voltages and each of the reference voltages, a main amplifier circuit for amplifying the output of the preamplifier circuit and generating a control signal, and a driver circuit for generating the internal source voltage in response to the control signal. An input stage of the main amplifier circuit is configured by MOS transistors coupling the gates and bodies of the MOS transistors.
Abstract:
A semiconductor integrated circuit device has a negative voltage generation circuit provided at each power supply circuit unit for six memory macros. Therefore, the response with respect to variation in a negative voltage is increased. In a standby mode, a negative voltage supply line for the six memory macros is connected by a switch circuit, and only a negative voltage generation circuit of one power supply circuit unit among six negative voltage generation circuits of the six power supply circuit units is rendered active. Thus, increase in standby current can be prevented.
Abstract:
The present invention provides a regulator circuit that can fast-respond to a variation in load current and supply a sufficient drive current so as to be capable of generating a stable internal source voltage. The regulator circuit includes a preamplifier circuit that detects and amplifies a different between a reference voltage and an internal source voltage, a clamp circuit that limits the amplitude of an output of the preamplifier circuit, a main amplifier circuit that amplifies the amplitude-limited output of the preamplifier circuit, and a driver circuit that outputs the internal source voltage according to the output of the main amplifier. Even though the internal source voltage varies abruptly, the regulator circuit does not oscillate owing to the effect of the clamp circuit.
Abstract:
The present invention aims at providing a semiconductor memory device that can be manufactured by a MOS process and can realize a stable operation. A storage transistor has impurity diffusion regions, a channel formation region, a charge accumulation node, a gate oxide film, and a gate electrode. The gate electrode is connected to a gate line and the impurity diffusion region is connected to a source line. The storage transistor creates a state where holes are accumulated in the charge accumulation node and a state where the holes are not accumulated in the charge accumulation node to thereby store data “1” and data “0”, respectively. An access transistor has impurity diffusion regions, a channel formation region, a gate oxide film, and a gate electrode. The impurity diffusion region is connected to a bit line.
Abstract:
The present invention provides a semiconductor integrated circuit device in which characteristics of an SOI transistor are effectively used to achieve higher speed, higher degree of integration, and also reduction in voltage and power consumption. The semiconductor integrated circuit device according to the present invention has a configuration in which a plurality of external power supply lines and body voltage control lines are alternately arranged in one direction so as to extend over the entire chip, which supply power and a body voltage to logic circuits, an analog circuit and memory circuits. A body voltage control type logic gate is fully applied in the logic circuit, whereas the body voltage control type logic gate is partially applied in the memory circuit.
Abstract:
The present invention provides a current-limited oscillator capable of performing stable operation even when it is driven with a low power-supply voltage, and a charge pump circuit using the oscillator. A current-limited oscillator has a delay section that includes a plurality of series-connected inverters to delay an output pulse on the basis of a current limiting level indication signal, and the oscillator further includes at least one first transistor that limits a first current between the inverters and a high potential power supply and at least one second transistor that limits a second current between the inverters and a low potential power supply, wherein at least one of the plurality of inverters is configured as a first inverter that is connected with the first transistor and is not connected with the second transistor, and at least another of the plurality of inverters is configured as a second inverter that is not connected with the first transistor and is connected with the second transistor.