摘要:
A thin film diode (100A) includes a semiconductor layer (130) having first, second, and third semiconductor regions, a first insulating layer (122) formed on the semiconductor layer (130), and a second insulating layer (123) formed on the first insulating layer (122). The first semiconductor region (134A) contains an impurity of a first-conductivity type at a first concentration; the second semiconductor region (135A) contains an impurity of a second-conductivity type different from the first conductivity type at a second concentration; and the third semiconductor region (133A) contains the first-conductivity type impurity at a third concentration lower than the first concentration, or contains the second-conductivity type impurity at a third concentration lower than the second concentration. The first semiconductor region (134A) conforms to an aperture pattern in the second insulating layer (123), or the second semiconductor region (135A) conforms to an aperture pattern in the second insulating layer (123).
摘要:
A thin film diode (100A) includes a semiconductor layer (130) having first, second, and third semiconductor regions, a first insulating layer (122) formed on the semiconductor layer (130), and a second insulating layer (123) formed on the first insulating layer (122). The first semiconductor region (134A) contains an impurity of a first-conductivity type at a first concentration; the second semiconductor region (135A) contains an impurity of a second-conductivity type different from the first conductivity type at a second concentration; and the third semiconductor region (133A) contains the first-conductivity type impurity at a third concentration lower than the first concentration, or contains the second-conductivity type impurity at a third concentration lower than the second concentration. The first semiconductor region (134A) conforms to an aperture pattern in the second insulating layer (123), or the second semiconductor region (135A) conforms to an aperture pattern in the second insulating layer (123).
摘要:
Provided is a frame configuration usable for both SISO transmission and MISO and/or MIMO transmission. A frame configurator of a transmission device configures a frame by gathering data for SISO and configures a frame by gathering data for MISO and/or MIMO data, thereby to improve the reception performance (detection performance) of a reception device.
摘要:
In order to implement both a physical later pipe (PLP) structure and a plurality of receiver classes, a transmitting apparatus includes: a signaling information generation unit which generates signaling information including a transmission parameter for each of PLPs; a PLP processing group which performs processing based on the transmission parameter for each of the PLPs; and a transmitting unit which transmits data including the generated signaling information and PLP data for each of the PLPs. The PLP data is received by a receiving apparatus that is indicated by a flag of the PLP and is not received by another receiving apparatus, the receiving apparatuses being included in a plurality of receiving apparatuses classified under a plurality of states. The generated signaling information includes, as the transmission parameter for each of the PLPs, the flag of the PLP.
摘要:
An OFDM transmitter and an OFDM receiver respectively transmit and receive N (N≧2, N is an integer) control symbols. For each control symbol, a guard interval time-domain signal is, for example, identical to a signal obtained by frequency-shifting at least a portion of a useful symbol time-domain signal by an amount different from any other symbol, or to a signal obtained by frequency-shifting one or both of a portion and a span of a useful symbol interval time-domain signal different from any other symbol by a predetermined amount.
摘要:
A transmission method for transmitting a first modulated signal and a second modulated signal in the same frequency at the same time. Each signal has been modulated according to a different modulation scheme. The transmission method applies precoding on both signals using a fixed precoding matrix, applies different power change to each signal, and regularly changes the phase of at least one of the signals, thereby improving received data signal quality for a reception device.
摘要:
Provided is control information related to polarizations of antennas for MISO communication. The control signal generator generates polarization information indicating whether antennas used for transmission by MISO have only a first polarization or have a second polarization as well as the first polarization. With this structure, the present invention allows for the use of combinations of SISO, MISO and MIMO, taking the polarization of antennas. Furthermore, the present invention enables the receiver to reduce the power consumption.
摘要:
Disclosed is a precoding method for generating, from a plurality of baseband signals, a plurality of precoded signals that are transmitted in the same frequency bandwidth at the same time. According to the precoding method, one matrix is selected from among matrices defining a precoding process that is performed on the plurality of baseband signals by hopping between the matrices. A first baseband signal and a second baseband signal relating to a first coded block and a second coded block generated by using a predetermined error correction block coding scheme satisfy a given condition.
摘要:
A display device includes a display portion having an aspect ratio of (16+a):9 on an assumption that a is a positive number and the aspect ratio represents a ratio of horizontal size:vertical size. The display device presents full display of a first image having the aspect ratio of 16:9 such that a vertical size of the first image is substantially equal to a vertical size of the display portion, while displaying a second image to be not overlapped with the first image. Convenience for users can be thereby increased.
摘要:
An OFDM reception apparatus effectively suppresses a reduction in reception performance during high-speed mobile reception. The OFDM reception apparatus includes a transmission channel characteristic estimating unit for calculating a transmission channel characteristic value indicating phase and amplitude distortions in an OFDM signal for each sub-carrier, the phase and amplitude distortions occurring during propagation through a transmission channel, and calculating an n-th differentiation of the transmission channel characteristic value, and an interference component removing unit for using the transmission channel characteristic value and the n-th differentiation calculated for each of the sub-carriers by the transmission channel characteristic estimating unit, to remove an interference component between the sub-carriers from the OFDM signal.