摘要:
Disclosed is a particulate filter, which is adapted to be disposed in an exhaust passage of an engine to trap particulate matter contained in exhaust gas discharged from the engine. The particulate filter comprises a filter body having a porous partition wall which defines a plurality of exhaust gas channels allowing the exhaust gas to pass therethrough, and a catalyst layer formed on a surface of the porous partition wall. The catalyst layer includes a Zr-based composite oxide which contains zirconium (Zr), and a rare-earth metal except cerium, wherein a content ratio of an oxide of the non-cerium rare-earth metal to a total amount of ZrO2 and the oxide of the non-cerium rare-earth metal in the Zr-based composite oxide is set in the range of greater than 33 mol % to less than 40 mol %. The particulate filter of the present invention can achieve a higher PM burning rate to burn PM within a shorter period of time. In addition, the higher PM burning rate makes it possible to provide enhanced fuel economy performance in an engine designed to perform a post-injection control.
摘要:
Disclosed is a particulate filter 10, which comprises a filter body 8 including a plurality of filter segments F1, F2 joined to each other by a joining material 7, wherein each of the filter segments includes a plurality of inflow cells each having a closed end on a downstream side in an exhaust-gas flow direction, and a plurality of outflow cells each having a closed end on an upstream side in the exhaust-gas flow direction. The filter segments include a first filter segment located in a central region of the particulate filter and designed to form each of the inflow cells to have an opening area approximately equal to that of each of the outflow cells, and a second filer segment located in at least a part of an outer peripheral region of the particulate filter and designed to form each of the inflow cells to have an opening area greater than that of each of the outflow cells. The present invention can keep the central region of the particulate filter from becoming overheated during a particulate-filter regeneration process, while suppressing a pressure loss.
摘要:
Disclosed is a catalytic material for purifying an exhaust gas component. The catalytic material comprises a composite oxide which contains, as essential components, zirconium (Zr) and neodymium (Nd), and further contains a rare-earth metal R other than cerium (Ce) and neodymium (Nd), wherein each of the zirconium, neodymium and rare-earth metal R constituting the composite oxide is contained, in the form of oxide, in such a manner that a ratio of Nd2O3/(ZrO2+Nd2O3+RO) is 3 mol % or more, and a ratio of (Nd2O3+RO)/(ZrO2+Nd2O3+RO) is 33 mol % or less. The catalytic material of the present invention can oxidize/burn PM in a short period of time, while suppressing CO emission during the burning of the PM, and can achieve further enhanced NOx conversion performance.
摘要翻译:公开了一种用于净化废气成分的催化材料。 催化剂材料包含含有锆(Zr)和钕(Nd)作为必要成分的复合氧化物,并且还包含除了铈(Ce)和钕(Nd)之外的稀土金属R,其中每个锆 构成复合氧化物的钕和稀土类金属R以氧化物的形式含有Nd 2 O 3 3(ZrO 2)的比例 < 2> 2 + Nd 2 O 3 + RO)的摩尔比为3摩尔%以上,(Nd 2 N 2 O 2 + > O 3 + RO)/(ZrO 2 + Nd 2 O 3 + RO)为33摩尔% 或更少。 本发明的催化剂材料可在短时间内氧化/燃烧PM,同时在PM燃烧过程中抑制CO排放,并可进一步提高NOx转化性能。
摘要:
Disclosed is a catalytic material for purifying an exhaust gas component. The catalytic material comprises a composite oxide which contains, as essential components, zirconium (Zr) and neodymium (Nd), and further contains a rare-earth metal R other than cerium (Ce) and neodymium (Nd), wherein each of the zirconium, neodymium and rare-earth metal R constituting the composite oxide is contained, in the form of oxide, in such a manner that a ratio of Nd2O3/(ZrO2+Nd2O3+RO) is 3 mol % or more, and a ratio of (Nd2O3+RO)/(ZrO2+Nd2O3+RO) is 33 mol % or less. The catalytic material of the present invention can oxidize/burn PM in a short period of time, while suppressing CO emission during the burning of the PM, and can achieve further enhanced NOx conversion performance.
摘要:
A catalyst-carried particulate filter contains a catalyst obtained by mixing Pt/alumina acting to promote the burning of particulates in a high temperature range, a second oxide acting to promote the burning of particulates in a low temperature range and a first oxide acting to promote the burning of particulates in an intermediate temperature range.
摘要:
Disclosed is a particulate filter 10, which comprises a filter body 8 including a plurality of filter segments F1, F2 joined to each other by a joining material 7, wherein each of the filter segments includes a plurality of inflow cells each having a closed end on a downstream side in an exhaust-gas flow direction, and a plurality of outflow cells each having a closed end on an upstream side in the exhaust-gas flow direction. The filter segments include a first filter segment located in a central region of the particulate filter and designed to form each of the inflow cells to have an opening area approximately equal to that of each of the outflow cells, and a second filer segment located in at least a part of an outer peripheral region of the particulate filter and designed to form each of the inflow cells to have an opening area greater than that of each of the outflow cells. The present invention can keep the central region of the particulate filter from becoming overheated during a particulate-filter regeneration process, while suppressing a pressure loss.
摘要:
Walls forming exhaust gas channels in a DPF are coated with a catalyst layer for promoting the burning of particulates trapped thereon. The catalyst layer contains alumna and a composite oxide containing Ce as a major component and rare earth metal other than Ce or alkali earth metal. Pt is loaded on the alumina and the composite oxide.
摘要:
Disclosed is a catalytic material for removing diesel particulates, which comprises a composite oxide which contains zirconium as a primary component and a rare-earth metal except for cerium and yttrium. The composite oxide has a crystallite diameter of 13 nm to 40 nm.
摘要:
In a particulate filter, a catalyst layer containing Pt-carried activated alumina particles, CeZr-based mixed oxide particles and ZrNd-based mixed oxide particles is formed, the proportion of the total amount of the CeZr-based mixed oxide particles and the ZrNd-based mixed oxide particles in the total amount of the Pt-carried activated alumina particles, the CeZr-based mixed oxide particles and the ZrNd-based mixed oxide particles is 10% to 60% by mass, both inclusive, and the mass ratio of the CeZr-based mixed oxide particles to the ZrNd-based mixed oxide particles is 20/80 to 80/20, both inclusive. This configuration enhances the particulate burning property and the low-temperature exhaust gas conversion efficiency.
摘要:
A catalyst layer formed on the walls of exhaust gas channels in a particulate filter contains a catalyst material containing at least two kinds of primary particles selected from the group consisting of primary particles of activated alumina, primary particles of a ZrNd-based mixed oxide and primary particles of a CeZr-based mixed oxide. The catalyst material is formed so that primary particles of one of the ZrNd-based mixed oxide and the CeZr-based mixed oxide are dispersedly carried on the surface of each of secondary particles. Each secondary particle is formed by cohesion of at least one kind of primary particles selected from the group consisting of primary particles of activated alumina and primary particles of the other of the ZrNd-based mixed oxide and the CeZr-based mixed oxide.