摘要:
In a semiconductor device, a wiring pattern groove is formed in a surface portion of a silicon oxide film provided above a semiconductor substrate. A wiring layer is buried into the wiring pattern groove with a barrier metal film interposed therebetween. The barrier metal film is selectively removed from each sidewall portion of the wiring pattern groove. In other words, the barrier metal film is left only on the bottom of the wiring pattern groove. Thus, a damascene wiring layer having a hollow section whose dielectric constant is low between each sidewall of the wiring pattern groove and each side of the wiring layer can be formed in the semiconductor device.
摘要:
In a semiconductor device, a wiring pattern groove is formed in a surface portion of a silicon oxide film provided above a semiconductor substrate. A wiring layer is buried into the wiring pattern groove with a barrier metal film interposed therebetween. The barrier metal film is selectively removed from each sidewall portion of the wiring pattern groove. In other words, the barrier metal film is left only on the bottom of the wiring pattern groove. Thus, a damascene wiring layer having a hollow section whose dielectric constant is low between each sidewall of the wiring pattern groove and each side of the wiring layer can be formed in the semiconductor device.
摘要:
In a semiconductor device, a wiring pattern groove is formed in a surface portion of a silicon oxide film provided above a semiconductor substrate. A wiring layer is buried into the wiring pattern groove with a barrier metal film interposed therebetween. The barrier metal film is selectively removed from each sidewall portion of the wiring pattern groove. In other words, the barrier metal film is left only on the bottom of the wiring pattern groove. Thus, a damascene wiring layer having a hollow section whose dielectric constant is low between each sidewall of the wiring pattern groove and each side of the wiring layer can be formed in the semiconductor device.
摘要:
In a semiconductor device, a wiring pattern groove is formed in a surface portion of a silicon oxide film provided above a semiconductor substrate. A wiring layer is buried into the wiring pattern groove with a barrier metal film interposed therebetween. The barrier metal film is selectively removed from each sidewall portion of the wiring pattern groove. In other words, the barrier metal film is left only on the bottom of the wiring pattern groove. Thus, a damascene wiring layer having a hollow section whose dielectric constant is low between each sidewall of the wiring pattern groove and each side of the wiring layer can be formed in the semiconductor device.
摘要:
In a semiconductor device, a wiring pattern groove is formed in a surface portion of a silicon oxide film provided above a semiconductor substrate. A wiring layer is buried into the wiring pattern groove with a barrier metal film interposed therebetween. The barrier metal film is selectively removed from each sidewall portion of the wiring pattern groove. In other words, the barrier metal film is left only on the bottom of the wiring pattern groove. Thus, a damascene wiring layer having a hollow section whose dielectric constant is low between each sidewall of the wiring pattern groove and each side of the wiring layer can be formed in the semiconductor device.
摘要:
This invention provides a capacitor including a metal lower electrode having an undulated shape and an improved electrode area, and a method of manufacturing the same. A capacitor for data storage is formed on a semiconductor substrate (not shown) via an insulating interlayer having a contact plug. The capacitor has a lower electrode whose inner and outer surfaces are rough or undulated such that one surface has a shape conforming to the shape of the other surface, a dielectric film formed to cover the surfaces of the lower electrode, and an upper electrode formed to cover the lower electrode via the dielectric film. The lower electrode has a cylindrical shape with an open upper end. The lower electrode is connected to a cell transistor through the contact plug. The lower electrode is formed from a metal or a metal oxide.
摘要:
A semiconductor memory device comprises a semiconductor substrate, a first conducting layer formed above the main surface of the semiconductor substrate, a second conducting layer formed above the first conducting layer through a first insulating layer and connected to the first conducting layer through a first via-conductor formed in a first contact hole formed in the first insulating layer, and a third conducting layer formed beneath the second conducting layer through a second insulating layer and connected to the second conducting layer through a second via-conductor formed in a second contact hole formed in the second insulating layer, in which an angle formed by a tangent to an inner wall of the first contact hole and a normal to the first conducting layer at a portion of the first conducting layer at which the first contact hole is in contact with the first conducting layer, is larger than an angle formed by a tangent to an inner wall of the second contact hole and a normal to the third conducting layer at a portion of the third conducting layer at which the second contact hole is in contact with the third conducting layer. By virtue of this structure, it is possible to avoid influence of electrical potential variation upon the first conducting layer in the manufacturing process.
摘要:
A first concave portion for the element isolation, a second concave portion for an aligning mark, and a third concave portion for an anti-fuse portion are formed simultaneously within a silicon substrate. After a silicon oxide film is formed on the entire surface, the silicon oxide film positioned within the second and third concave portions is removed. Then, a gate insulating film is formed on the entire surface, followed by forming a polysilicon film on the gate insulating film. Further, these polysilicon film and gate insulating film are selectively removed to form a gate electrode above an element region, an aligning mark portion in the second concave portion, and a gate electrode for an anti-fuse portion on the bottom surface of the third concave portion.
摘要:
A first concave portion for the element isolation, a second concave portion for an aligning mark, and a third concave portion for an anti-fuse portion are formed simultaneously within a silicon substrate. After a silicon oxide film is formed on the entire surface, the silicon oxide film positioned within the second and third concave portions is removed. Then, a gate insulating film is formed on the entire surface, followed by forming a polysilicon film on the gate insulating film. Further, these polysilicon film and gate insulating film are selectively removed to form a gate electrode above an element region, an aligning mark portion in the second concave portion, and a gate electrode for an anti-fuse portion on the bottom surface of the third concave portion.
摘要:
This invention provides a capacitor including a metal lower electrode having an undulated shape and an improved electrode area, and a method of manufacturing the same. A capacitor for data storage is formed on a semiconductor substrate (not shown) via an insulating interlayer having a contact plug. The capacitor has a lower electrode whose inner and outer surfaces are rough or undulated such that one surface has a shape conforming to the shape of the other surface, a dielectric film formed to cover the surfaces of the lower electrode, and an upper electrode formed to cover the lower electrode via the dielectric film. The lower electrode has a cylindrical shape with an open upper end. The lower electrode is connected to a cell transistor through the contact plug. The lower electrode is formed from a metal or a metal oxide.