摘要:
An object of the invention is to form an insulating film having favorable insulation and planarity. An insulating film is formed by performing heat treatment a resin containing a siloxane polymer after application, in an atmosphere including an inert gas as its main component and having an oxygen concentration of 5% or less and a water concentration of 1% or less. Preferably, an oxygen concentration is 1% or less and a water concentration is 0.1% or less. The resin containing a siloxane polymer includes a methyl group and a phenyl group. Further, the inert gas is nitrogen.
摘要:
An object of the invention is to form an insulating film having favorable insulation and planarity. An insulating film is formed by performing heat treatment a resin containing a siloxane polymer after application, in an atmosphere including an inert gas as its main component and having an oxygen concentration of 5% or less and a water concentration of 1% or less. Preferably, an oxygen concentration is 1% or less and a water concentration is 0.1% or less. The resin containing a siloxane polymer includes a methyl group and a phenyl group. Further, the inert gas is nitrogen.
摘要:
It is an object of the present invention to form a plurality of elements in a limited area to reduce the area occupied by the elements for integration so that further higher resolution (increase in number of pixels), reduction of each display pixel pitch with miniaturization, and integration of a driver circuit that drives a pixel portion can be advanced in semiconductor devices such as liquid crystal display devices and light-emitting devices that has EL elements. A photomask or a reticle provided with an assist pattern that is composed of a diffraction grating pattern or a semi-transparent film and has a function of reducing a light intensity is applied to a photolithography process for forming a gate electrode to form a complicated gate electrode. In addition, a top-gate TFT that has the multi-gate structure described above and a top gate TFT that has a single-gate structure can be formed on the same substrate just by changing the mask without increasing the number of processes.
摘要:
It is an object of the present invention to form a plurality of elements in a limited area to reduce the area occupied by the elements for integration so that further higher resolution (increase in number of pixels), reduction of each display pixel pitch with miniaturization, and integration of a driver circuit that drives a pixel portion can be advanced in semiconductor devices such as liquid crystal display devices and light-emitting devices that has EL elements. A photomask or a reticle provided with an assist pattern that is composed of a diffraction grating pattern or a semi-transparent film and has a function of reducing a light intensity is applied to a photolithography process for forming a gate electrode to form a complicated gate electrode. In addition, a top-gate TFT that has the multi-gate structure described above and a top gate TFT that has a single-gate structure can be formed on the same substrate just by changing the mask without increasing the number of processes.
摘要:
To provide a semiconductor device having a circuit with high operating performance and high reliability, and improve the reliability of the semiconductor device, thereby improving the reliability of an electronic device having the same. The aforementioned object is achieved by combining a step of crystallizing a semiconductor layer by irradiation with continuous wave laser beams or pulsed laser beams with a repetition rate of 10 MHz or more, while scanning in one direction; a step of photolithography with the use of a photomask or a leticle including an auxiliary pattern which is formed of a diffraction grating pattern or a semi-transmissive film having a function of reducing the light intensity; and a step of performing oxidation, nitridation, or surface-modification to the surface of the semiconductor film, an insulating film, or a conductive film, with high-density plasma with a low electron temperature.
摘要:
It is an object of the present invention to form a plurality of elements in a limited area to reduce the area occupied by the elements for integration so that further higher resolution (increase in number of pixels), reduction of each display pixel pitch with miniaturization, and integration of a driver circuit that drives a pixel portion can be advanced in semiconductor devices such as liquid crystal display devices and light-emitting devices that has EL elements. A photomask or a reticle provided with an assist pattern that is composed of a diffraction grating pattern or a semi-transparent film and has a function of reducing a light intensity is applied to a photolithography process for forming a gate electrode to form a complicated gate electrode. In addition, a top-gate TFT that has the multi-gate structure described above and a top gate TFT that has a single-gate structure can be formed on the same substrate just by changing the mask without increasing the number of processes.
摘要:
An object of the invention is to provide a light emitting device in which the variation in emission spectrum depending on an angle for seeing a surface through which light is emitted is reduced. The light emitting device of the invention includes a first insulating layer formed over a substrate, a second insulating layer formed over the first insulating layer, and a semiconductor layer formed over the second insulating layer. A gate insulating layer is formed to cover the second insulating layer and the semiconductor layer. A gate electrode is formed over the gate insulating layer. A first interlayer insulating layer is formed to cover the gate insulating layer and the gate electrode. An opening is formed through the first interlayer insulating layer, the gate insulating layer and the second insulating layer. A second interlayer insulating layer is formed to cover the first insulating layer and the opening. A light emitting element is formed over the opening.
摘要:
To provide a semiconductor device having a circuit with high operating performance and high reliability, and improve the reliability of the semiconductor device, thereby improving the reliability of an electronic device having the same. The aforementioned object is achieved by combining a step of crystallizing a semiconductor layer by irradiation with continuous wave laser beams or pulsed laser beams with a repetition rate of 10 MHz or more, while scanning in one direction; a step of photolithography with the use of a photomask or a leticle including an auxiliary pattern which is formed of a diffraction grating pattern or a semi-transmissive film having a function of reducing the light intensity; and a step of performing oxidation, nitridation, or surface-modification to the surface of the semiconductor film, an insulating film, or a conductive film, with high-density plasma with a low electron temperature.
摘要:
The invention provides a technique to manufacture a highly reliable semiconductor device and a display device at high yield. As an exposure mask, an exposure mask provided with a diffraction grating pattern or an auxiliary pattern formed of a semi-transmissive film with a light intensity reducing function is used. With such an exposure mask, various light exposures can be more accurately controlled, which enables a resist to be processed into a more accurate shape. Therefore, when such a mask layer is used, the conductive film and the insulating film can be processed in the same step into different shapes in accordance with desired performances. As a result, thin film transistors with different characteristics, wires in different sizes and shapes, and the like can be manufactured without increasing the number of steps.
摘要:
The invention provides a technique to manufacture a highly reliable semiconductor device and a display device at high yield. As an exposure mask, an exposure mask provided with a diffraction grating pattern or an auxiliary pattern formed of a semi-transmissive film with a light intensity reducing function is used. With such an exposure mask, various light exposures can be more accurately controlled, which enables a resist to be processed into a more accurate shape. Therefore, when such a mask layer is used, the conductive film and the insulating film can be processed in the same step into different shapes in accordance with desired performances. As a result, thin film transistors with different characteristics, wires in different sizes and shapes, and the like can be manufactured without increasing the number of steps.