摘要:
A photocatalytic apparatus is provided that uses a photovoltaic action for both electrodes and conjugates a photocatalytic action with the photovoltaic action to efficiently perform material transformation on the basis of a redox reaction on the electrodes using light energy. A photocatalytic apparatus includes a first electrode functioning as an anode and a second electrode functioning as a cathode. The first electrode includes a first transparent conductive substrate having light transmittivity and electrical conductivity, a first light power generation layer that is disposed on the first transparent conductive substrate and absorbs light to generate electrons and holes, and a photocatalytic layer that is disposed on the first light power generation layer and catalyzes an oxidation reaction when being irradiated with light. The second electrode includes a second transparent conductive substrate having light transmittivity and electrical conductivity, a second light power generation layer that is disposed on the second transparent conductive substrate and absorbs light to generate electrons and holes, and a catalytic layer that is disposed on the second light power generation layer and catalyzes a reduction reaction.
摘要:
The present invention provides a thermoelectric conversion material that has low thermal conductivity and that is stable at a high temperature, and a thermoelectric conversion module using the same. The thermoelectric conversion material includes a granular base material including a semiconductor, a fine particle with a guest material distributed in the granular base material, and a binder with the guest material on a grain boundary of the granular base material. An amount of the binder is equal to or smaller than an amount of the fine particle, an amount of the granular base material is larger than a total amount of the binder and the fine particle, and the semiconductor and the guest material are in an isolated state not forming a compound by a eutectic reaction, a eutectoid reaction, a peritectic reaction, a peritectoid reaction, a monotectic reaction, or a segregation reaction.
摘要:
In order to provide a thermoelectric conversion element which has a high Seebeck coefficient, a low thermal conductivity, and a high performance, even if the material system that has a low environmental load and can reduce the cost is used, the thermoelectric conversion element in which lattice points are classified into two or more kinds (A site and B site), lattices of which the kinds are different are connected to each other, the numbers of lattices of which the kinds are different are different (A site: 2, and B site: 1), and a lattice structure is configured by arranging nanoparticles or semiconductor quantum dots, includes areas of which conductivity types are different.
摘要:
To provide a photocatalyst decomposition apparatus that can supply a liquid phase containing a substance to be decomposed by a photocatalyst and that can perform decomposition of the substance more efficiently than in the related art. A photocatalyst decomposition system according to the invention includes: a gas phase generation apparatus configured to convert a liquid phase containing a decomposition object into a gas phase; and a photocatalyst member configured to come into contact with the gas phase to decompose the decomposition object by light from a light source. The photocatalyst member includes a base material formed of a porous material and a photocatalyst layer provided on a surface of the base material.
摘要:
A thermoelectric conversion material includes a matrix phase configured from a semiconductor. A first grain-boundary phase and a second grain-boundary phase are provided at a grain boundary of the matrix phase. The first grain-boundary phase is configured from a material which does not form a compound with the matrix phase by a eutectic reaction, a eutectoid reaction, a peritectic reaction, a peritectoid reaction, an eccentric reaction, or a segregation reaction. The second grain-boundary phase is configured from a material having resistance which is lower than that of the matrix phase or the first grain-boundary phase. A ratio of a volume of the second grain-boundary phase to a volume of the first grain-boundary phase is smaller than 1.
摘要:
Provided is a p-type thermoelectric conversion material achieving a low environment load and low costs and having high efficiency. A thermoelectric conversion device is constituted by raw materials existing in a great amount in nature by using Fe and S as main components. Further, since FeS2 of a pyrite structure has a d orbit derived from Fe in a valence band and a high state density, high performance as the thermoelectric conversion device is implemented by adding an addition element to this material system to express a p-type semiconductor characteristic.
摘要:
A hydrogen production apparatus including a photocatalyst and generating hydrogen from water includes a wavelength separation unit separating sunlight by wavelength, an infrared light conversion unit converting infrared light separated by the wavelength separation unit to visible light, and an ultraviolet light conversion unit converting ultraviolet light separated by the wavelength separation unit to visible light.
摘要:
The present invention improves the performance of a thermoelectric conversion material and a thermoelectric conversion module. A thermoelectric conversion material has a mother phase containing a chimney ladder type compound comprising a first element of groups 4 to 9 and a second element of groups 13 to 15 and an additive phase existing at a grain boundary of the mother phase, the mother phase contains a third element to change a lattice constant of the chimney ladder type compound, and the additive phase contains the second element.
摘要:
Provided is a thermoelectric conversion material formed from a full Heusler alloy represented by the composition formula: Fe2+α(Ti1−βM1β)1−α+γ(Al1−δM2δ)1−γ. M1 represents at least one element selected from the group consisting of V, Nb and Ta, and M2 represents at least one element selected from the group consisting of Group 13 elements except for Al and Group 14 elements, α satisfies the relation: 0