Abstract:
The purpose of the present invention is to provide an overlay error measuring device which measures an overlay error with high accuracy even when a lower layer pattern is disposed under a thin film and a sufficient signal amount cannot be ensured. The present invention proposes an overlay error measuring device provided with an arithmetic processing unit for measuring a pattern formed on a sample on the basis of a signal waveform obtained by a charged particle beam device. The arithmetic processing unit finds a correlation with the signal waveform using a partial waveform obtained on the basis of partial extraction of the signal waveform, forms a correlation profile indicating the correlation, and measures an overlay error using the correlation profile.
Abstract:
Image processing apparatus includes: interpolation process image acquisition means for acquiring an interpolation process image of prescribed size which includes an interpolation point of an inputted image; Fourier transform means for subjecting the interpolation process image which is acquired with the interpolation process image acquisition means to Fourier transform; phase change means for changing, a phase of each value of the transformed interpolation process image which has been subjected to Fourier transform by the Fourier transform means, such that the interpolation point migrates to a desired nearby integer coordinate position; inverse Fourier transform means for subjecting the interpolation process image whose phase has been changed by the phase change means, to inverse Fourier transform; interpolation value determination means for adopting an interpolation point, a value of a pixel at the integer coordinate position, from the transformed interpolation process image subjected to inverse Fourier transform by the inverse Fourier transform means.
Abstract:
For scanning electron beams and measuring overlay misalignment between an upper layer pattern and a lower layer pattern with high precision, electron beams are scanned over a region including a first pattern and a second pattern of a sample, the sample having the lower layer pattern (the first pattern) and the upper layer pattern (the second pattern) formed in a step after a step of forming the first pattern. The electron beams are scanned such that scan directions and scan sequences of the electron beams become axial symmetrical or point-symmetrical in a plurality of pattern position measurement regions defined within the scan region for the electron beams, thereby reducing measurement errors resulting from the asymmetry of electric charge.
Abstract:
Provided is a charged particle beam device which can specify a position of an initial core with high accuracy even when fine line and space patterns are formed by an SADP in plural times. The charged particle beam device includes a detector (810) which detects secondary charged particles discharged from a sample (807) when a charged particle beam is emitted to the sample having a plurality of patterns of line shape, a display unit (817) which displays image data of a surface of the sample on the basis of a signal of the secondary charged particles, a calculation unit (812) which calculates an LER value with respect to the plurality of the patterns of line shape from the image data, and a determination unit (816) which compares the values to determine a position of the initial core.
Abstract:
The purpose of the present invention is to provide an overlay error measuring device which measures an overlay error with high accuracy even when a lower layer pattern is disposed under a thin film and a sufficient signal amount cannot be ensured. The present invention proposes an overlay error measuring device provided with an arithmetic processing unit for measuring a pattern formed on a sample on the basis of a signal waveform obtained by a charged particle beam device. The arithmetic processing unit finds a correlation with the signal waveform using a partial waveform obtained on the basis of partial extraction of the signal waveform, forms a correlation profile indicating the correlation, and measures an overlay error using the correlation profile.
Abstract:
Provided is a charged particle beam device which can specify a position of an initial core with high accuracy even when fine line and space patterns are formed by an SADP in plural times. The charged particle beam device includes a detector (810) which detects secondary charged particles discharged from a sample (807) when a charged particle beam is emitted to the sample having a plurality of patterns of line shape, a display unit (817) which displays image data of a surface of the sample on the basis of a signal of the secondary charged particles, a calculation unit (812) which calculates an LER value with respect to the plurality of the patterns of line shape from the image data, and a determination unit (816) which compares the values to determine a position of the initial core.
Abstract:
Image processing apparatus includes: interpolation process image acquisition means for acquiring an interpolation process image of prescribed size which includes an interpolation point of an inputted image; Fourier transform means for subjecting the interpolation process image which is acquired with the interpolation process image acquisition means to Fourier transform; phase change means for changing, a phase of each value of the transformed interpolation process image which has been subjected to Fourier transform by the Fourier transform means, such that the interpolation point migrates to a desired nearby integer coordinate position; inverse Fourier transform means for subjecting the interpolation process image whose phase has been changed by the phase change means, to inverse Fourier transform; interpolation value determination means for adopting an interpolation point, a value of a pixel at the integer coordinate position, from the transformed interpolation process image subjected to inverse Fourier transform by the inverse Fourier transform means.