摘要:
A plasma etching system having a wafer chuck with a magnet that applies a magnetic field over a wafer to shield the wafer from charged particles. The magnetic field is parallel with the wafer, and is strongest near the wafer surface. The magnetic field may be straight, or circular. In operation, electrons are deflected from the wafer by the Lorentz force, the wafer acquires a positive charge, and ions are deflected by electrostatic repulsion. Neutral species are allowed through the magnetic field, and they collide with the wafer. Neutral species generally provide more isotropic and material-selective etching than charged particles, so the present magnetic field tends to increase etch isotropy and material selectivity. Also, the magnetic field can protect the wafer from seasoning processes designed to clean unwanted films from the chamber surface as seasoning processes typically rely on etching by charged particles.
摘要:
A plasma etching system having a wafer chuck with a magnet that applies a magnetic field over a wafer to shield the wafer from charged particles. The magnetic field is parallel with the wafer, and is strongest near the wafer surface. The magnetic field may be straight, or circular. In operation, electrons are deflected from the wafer by the Lorentz force, the wafer acquires a positive charge, and ions are deflected by electrostatic repulsion. Neutral species are allowed through the magnetic field, and they collide with the wafer. Neutral species generally provide more isotropic and material-selective etching than charged particles, so the present magnetic field tends to increase etch isotropy and material selectivity. Also, the magnetic field can protect the wafer from seasoning processes designed to clean unwanted films from the chamber surface as seasoning processes typically rely on etching by charged particles.
摘要:
A method for forming lines for semiconductor devices including, depositing a shallow trench isolation (STI) film stack on a silicon substrate, depositing a layer of polysilicon on the STI film stack, depositing a layer of antireflective coating on the layer of polysilicon, developing a phototoresist on the antireflective coating, wherein the photoresist defines a line, etching the layer of antireflective coating and the layer of polysilicon using RIE with a low bias power, removing the photoresist, removing the layer of antireflective coating, etching the STI film stack to form the line, wherein the layer of polysilicon further defines the line.
摘要:
Polysilicon etching methods are disclosed that employ a gas flow including perfluorocyclopentene (C5F8) and nitrogen trifluoride (NF3). The etching methods achieved a substantially vertical profile and smoother surfaces, and may achieve a 3sigma variation as low as 3.0 nm.
摘要翻译:公开了采用包括全氟环戊烯(C 5 H 5 F 8 N)和三氟化氮(NF 3 3))的气流的多晶硅蚀刻方法。 蚀刻方法实现了基本垂直的轮廓和更平滑的表面,并且可以实现低至3.0nm的3σ变化。
摘要:
A method and apparatus for detecting the endpoint in a dry plasma etching system comprising a first electrode (e.g., upper electrode) and a second electrode (e.g., lower electrode) upon which a substrate rests is described. A direct current (DC) voltage is applied between the first electrode and a ring electrode surrounding the second electrode, and the DC current is monitored to determine the endpoint of the etching process. The DC current is affected by the impedance of the plasma, and therefore responds to many variations including, for example, the plasma density, electron/ion flux to exposed surfaces, the electron temperature, etc.
摘要:
Methods of etching silicon nitride material, and more particularly, etching nitride selective to silicon dioxide or silicide, are disclosed. The methods include exposing a substrate having silicon nitride thereon to a plasma including at least one fluorohydrocarbon and a non-carbon containing fluorine source such as sulfur hexafluoride (SF6). The plasma may also include oxygen (O2) and the fluorohydrocarbons may include at least one of: trifluoromethane (CHF3), difluoromethane (CH2F2), and methyl fluoride (CH3F). In an alternative embodiment, the plasma includes one of hydrogen (H2) and nitrogen trifluoride (NF3) and one of tetrafluoromethane (CF4) and octafluorocyclobutane (C4F8). The methods are preferably carried out using a low bias voltage, e.g.
摘要翻译:公开了蚀刻氮化硅材料的方法,更具体地说,蚀刻对二氧化硅或硅化物有选择性的氮化物。 所述方法包括将其上具有氮化硅的衬底暴露于包括至少一种氟代烃和不含碳的氟源如六氟化硫(SF 6 N 6)的等离子体。 等离子体还可以包括氧(O 2 H 2),并且氟代烃可以包括以下中的至少一种:三氟甲烷(CHF 3 N 3),二氟甲烷(CH 2 N 2) > F 2)和氟化氟(CH 3 N 3 F)。 在替代实施方案中,等离子体包括氢(H 2 H 2)和三氟化氮(NF 3 N)之一和四氟甲烷(CF 3 SO 3) )和八氟环丁烷(C 4 H 8 F 8)。 该方法优选使用低偏置电压进行,例如, <100 V.
摘要:
A non-destructive in-situ elemental profiling of a layer in a set of layers method and system are disclosed. In one embodiment, a first emission of a plurality of photoelectrons is caused from the layer to be elementally profiled. An elemental profile of the layer is determined based on the emission. In another embodiment, a second emission of a plurality of photoelectrons is also received from the layer, and an elemental profile is determined by comparison of the resulting signals. A process that is altering the layer can then be controlled “on-the-fly” to obtain a desired material composition. Since the method can be employed in-situ and is non-destructive, it reduces turn around time and lowers wafer consumption. The invention also records the composition of all processed wafers, hence, removing the conventional statistical sampling problem.
摘要:
A method of etching a wafer using resonant infrared energy and a filter to control non-uniformities during plasma etch processing. The filter includes a predetermined array or stacked arrangement of variable transmission regions that mirror the spatial etch distortions caused by the plasma etching process. By spatially attenuating the levels of IR energy that reach the wafer, the filter improves uniformity in the etching process. Filters may be designed to compensate for edge fast etching due to macro-loading, asymmetric pumping in a plasma chamber, and magnetic field cusping.
摘要:
A method for making a semiconductor device structure, includes: providing a substrate; forming on the substrate a first gate with first spacers, a second gate with second spacers, respective source and drain regions of a same conductive type adjacent to the first gate and the second gate, an isolation region disposed intermediate of the first gate and the second gate, silicides on the first gate, the second gate and respective source and drain regions; forming additional spacers on the first spacers to produce an intermediate structure, and then disposing a stress layer over the entire intermediate structure.
摘要:
A temperature-controlled substrate holder having a high temperature substrate chuck is mounted within a chemical treatment chamber. The temperature-controlled substrate holder secures a substrate and maintains the substrate at a temperature that ranges from about 10° C. up to about 150° C. during execution of a chemical oxide removal process.