摘要:
A method of patterning a layer of high-k dielectric material is provided, which may be used in the fabrication of a semiconductor device. A first etch is performed on the high-k dielectric layer. A portion of the high-k dielectric layer being etched with the first etch remains after the first etch. A second etch of the high-k dielectric layer is performed to remove the remaining portion of the high-k dielectric layer. The second etch differs from the first etch. Preferably, the first etch is a dry etch process, and the second etch is a wet etch process. This method further includes a process of plasma ashing the remaining portion of the high-k dielectric layer after the first etch and before the second etch.
摘要:
A method of patterning a layer of high-k dielectric material is provided, which may be used in the fabrication of a semiconductor device. A first etch is performed on the high-k dielectric layer. A portion of the high-k dielectric layer being etched with the first etch remains after the first etch. A second etch of the high-k dielectric layer is performed to remove the remaining portion of the high-k dielectric layer. The second etch differs from the first etch. Preferably, the first etch is a dry etch process, and the second etch is a wet etch process. This method may further include a process of plasma ashing the remaining portion of the high-k dielectric layer after the first etch and before the second etch.
摘要:
A method of patterning a layer of high-k dielectric material is provided, which may be used in the fabrication of a semiconductor device. A first etch is performed on the high-k dielectric layer. A portion of the high-k dielectric layer being etched with the first etch remains after the first etch. A second etch of the high-k dielectric layer is performed to remove the remaining portion of the high-k dielectric layer. The second etch differs from the first etch. Preferably, the first etch is a dry etch process, and the second etch is a wet etch process. This method further includes a process of plasma ashing the remaining portion of the high-k dielectric layer after the first etch and before the second etch.
摘要:
A method for monitoring plasma parameters during a plasma process such as a plasma etching process, comparing the measured plasma parameters to predetermined parameter specifications, and either terminating the plasma process or modifying the plasma process in progress to re-establish the plasma parameters within the parameter specifications. The plasma parameters may be measured by the self-excited electron resonance spectroscopy (SEEKS) technique or by microwave interferometry.
摘要:
A process for forming a composite insulator spacer on the sides of a MOSFET gate structure, has been developed. The process features formation of additional insulator spacer shapes on top portions of sides of a gate structure in which an initial insulator spacer had been removed during an over etch cycle used for definition of the initial insulator spacer. The re-establishment of insulator spacer shapes provides a composite insulator spacer offering reduced risk of gate to substrate leakage or shorts, that can occur during a subsequent salicide procedure from the presence of metal silicide stringers or ribbons formed on, and residing on the composite insulator spacer.
摘要:
A process for trimming a photoresist layer during the fabrication of a gate electrode in a MOSFET is described. A bilayer stack with a top photoresist layer on a thicker organic underlayer is patternwise exposed with 193 nm or 157 nm radiation to form a feature having a width w1 in the top layer. A pattern transfer through the underlayer is performed with an anisotropic etch based on H2/N2 and SO2 chemistry. The feature formed in the bilayer stack is trimmed by 10 nm or more to a width w2 by a HBr/O2/Cl2 plasma etch. The pattern transfer through an underlying gate layer is performed with a third etch based on HBr/O2/Cl2 chemistry. The underlayer is stripped by an O2 ashing with no damage to the gate electrode. Excellent profile control of the gate electrode is achieved and a larger (w1−w2) is possible than in prior art methods.
摘要翻译:描述了在MOSFET的栅电极制造期间修整光致抗蚀剂层的工艺。 在较厚的有机底层上具有顶部光致抗蚀剂层的双层叠层以193nm或157nm辐射图案曝光以形成顶层中具有宽度w 1 1的特征。 通过底层的图案转移通过基于H 2 N 2 N 2 N 2 SO 3和SO 2 H 2化学的各向异性蚀刻进行。 通过HBr / O 2 / Cl 2等离子体将形成在双层叠层中的特征修剪10nm以上至宽度w 2 2 <! - SIPO
摘要:
Methods and structures for critical dimension or profile measurement are disclosed. The method provides a substrate having periodic openings therein. Material layers are formed in the openings, substantially planarizing a surface of the substrate. A scattering method is applied to the substrate with the material layers for critical dimension (CD) or profile measurement.
摘要:
A method of forming a channel region for a MOSFET device in a strained silicon layer via employment of adjacent and surrounding silicon-germanium shapes, has been developed. The method features simultaneous formation of recesses in a top portion of a conductive gate structure and in portions of the semiconductor substrate not occupied by the gate structure or by dummy spacers located on the sides of the conductive gate structure. The selectively defined recesses will be used to subsequently accommodate silicon-germanium shapes, with the silicon-germanium shapes located in the recesses in the semiconductor substrate inducing the desired strained channel region. The recessing of the conductive gate structure and of semiconductor substrate portions reduces the risk of silicon-germanium bridging across the surface of sidewall spacers during epitaxial growth of the alloy layer, thus reducing the risk of gate to substrate leakage or shorts.
摘要:
A method for removing organic material from an opening in a low k dielectric layer and above a metal layer on a substrate is disclosed. An ozone water solution comprised of one or more additives such as hydroxylamine or an ammonium salt is applied as a spray or by immersion. A chelating agent may be added to protect the metal layer from oxidation. A diketone may be added to the ozone water solution or applied in a gas or liquid phase in a subsequent step to remove any metal oxide that forms during the ozone treatment. A supercritical fluid mixture that includes CO2 and ozone can be used to remove organic residues that are not easily stripped by one of the aforementioned liquid solutions. The removal method prevents changes in the dielectric constant and refractive index of the low k dielectric layer and cleanly removes residues which improve device performance.
摘要:
The present invention discloses an electrode structure of a light emitted diode and manufacturing method of the electrodes. After formed a pn junction of a light emitted diode on a substrate, a layer of SiO2 is deposited on the periphery of the die of the LED near the scribe line of the wafer, then a transparent conductive layer is deposited blanketly, then a layer of gold or AuGe etc. is formed with an opening on the center of the die. After forming alloy with the semiconductor by heat treatment to form ohmic contact, a strip of aluminum (Al) is formed on one side of the die on the front side for wire bonding and to be the positive electrode of the LED. The negative electrode is formed on the substrate by metal contact. Another form of the electrode structure of the present invention is making both the positive and negative electrodes on the front side of the LED by etching the p-type semiconductor of the pn junction and forming a strip of negative electrode on the n-type semiconductor, the positive electrode is formed on the p-type semiconductor.