Abstract:
The application provides an apparatus, including a first section, a second section, and a first bonding wire group, where the first bonding wire group includes at least three first bonding wire units. The first bonding wire unit includes at least one arc-shaped bonding wire, one end and the other end of the first bonding wire unit are electrically connected to electrodes of the first section and the second section, respectively, where arc heights of first bonding wire units located at two sides of the first bonding wire group are higher than an arc height of a first bonding wire unit at another position, and an arc height of a first bonding wire unit located in a central area of the first bonding wire group is lower than an arc height of a first bonding wire unit at another position.
Abstract:
The application provides an apparatus, including a first section, a second section, and a first bonding wire group, where the first bonding wire group includes at least three first bonding wire units. The first bonding wire unit includes at least one arc-shaped bonding wire, one end and the other end of the first bonding wire unit are electrically connected to electrodes of the first section and the second section, respectively, where arc heights of first bonding wire units located at two sides of the first bonding wire group are higher than an arc height of a first bonding wire unit at another position, and an arc height of a first bonding wire unit located in a central area of the first bonding wire group is lower than an arc height of a first bonding wire unit at another position.
Abstract:
Embodiments for a power amplifier that can increase a low-frequency resonance frequency are provided. The power amplifier includes a power amplifying transistor die, a first metal oxide semiconductor capacitor, a direct current decoupling capacitor, and an output matching network, where: a drain of the power amplifying transistor die is connected to a first end of the first metal oxide semiconductor capacitor by using a bonding wire, and a second end of the first metal oxide semiconductor capacitor is grounded; the drain of the power amplifying transistor die is directly connected to the output matching network by using a bonding wire; a source of the power amplifying transistor die is grounded; the first end of the first metal oxide semiconductor capacitor is connected to one end of the direct current decoupling capacitor by using a bonding wire; and the other end of the direct current decoupling capacitor is grounded.
Abstract:
Relating to electronic components, the present disclosure provides a method for welding a gold-silicon eutectic chip, and a transistor. The method for welding a gold-silicon eutectic chip includes: electroplating a gold layer with a thickness smaller than or equal to 1 micron on surfaces of a chip carrier; bonding multiple gold protrusions on the gold layer in a welding region; and rubbing a chip in the welding region at a eutectic temperature to form a welding layer. The transistor includes a chip, a chip carrier, and a middle layer connecting the chip and the chip carrier, where the welding middle layer is a welding layer obtained by using the above welding method. The present disclosure reduces an amount of gold in use and lowers a cost of gold-silicon eutectic welding to a relatively large extent, and, accordingly, cuts down the cost of a transistor.
Abstract:
Relating to electronic components, the present disclosure provides a method for welding a gold-silicon eutectic chip, and a transistor. The method for welding a gold-silicon eutectic chip includes: electroplating a gold layer with a thickness smaller than or equal to 1 micron on surfaces of a chip carrier; bonding multiple gold protrusions on the gold layer in a welding region; and rubbing a chip in the welding region at a eutectic temperature to form a welding layer. The transistor includes a chip, a chip carrier, and a middle layer connecting the chip and the chip carrier, where the welding middle layer is a welding layer obtained by using the above welding method. The present disclosure reduces an amount of gold in use and lowers a cost of gold-silicon eutectic welding to a relatively large extent, and, accordingly, cuts down the cost of a transistor.