摘要:
A process of transferring a layer of a first material from a first substrate, having defects in a zone close to the surface, onto a host substrate made of a second material includes a step of thinning the first substrate in order to form a first thinned substrate, an ion or atom implantation in the first substrate in order to form an implantation plane therein, delimiting the layer to be transferred, and a transfer of the layer onto the host substrate by fracturing the substrate along the implantation plane.
摘要:
A process of transferring a layer of a first material from a first substrate, having defects in a zone close to the surface, onto a host substrate made of a second material includes a step of thinning the first substrate in order to form a first thinned substrate, an ion or atom implantation in the first substrate in order to form an implantation plane therein, delimiting the layer to be transferred, and a transfer of the layer onto the host substrate by fracturing the substrate along the implantation plane.
摘要:
A method for determining a minimum tension compensation stress which will have a membrane of a thickness of less than or equal to one micrometer, secured to a frame, having, in the absence of any external stress, a desired deflection. The membrane can be made as planar as possible in absence of any external stress, and its thickness can be less than or equal to one micrometer.
摘要:
A heterojunction photovoltaic cell includes at least one crystalline silicon oxide film directly placed onto one of the front or rear faces of a crystalline silicon substrate, between said substrate and a layer of amorphous or microcrystalline silicon. The thin film is intended to enable the passivation of said face of the substrate. The thin film is more particularly obtained by radically oxidizing a surface portion of the substrate, before depositing the layer of amorphous silicon. Moreover, a thin layer of intrinsic or microdoped amorphous silicon can be placed between said think film and the layer of amorphous or microcrystalline silicon.
摘要:
Method for producing nanostructures comprising: a step of providing a substrate (100) having a buried barrier layer (2) and above said barrier layer (2) a crystalline film (5) provided with a network of crystalline defects and/or stress fields (12) in a crystalline zone (13), one or several steps of attacking the substrate (100), of which a preferential attack either of the crystalline defects and/or the stress fields, or the crystalline zone (13) between the crystalline defects and/or the stress fields, said attack steps enabling the barrier layer (2) to be laid bared locally and protrusions (7) to be formed on a nanometric scale, separated from each other by hollows (7.1) having a base located in the barrier layer, the protrusions leading to nanostructures (7, 8).
摘要:
A method of fabricating a mixed microtechnology structure includes providing a provisional substrate including a sacrificial layer on which is formed a mixed layer including at least first patterns of a first material and second patterns of a second material different from the first material, where the first and second patterns reside adjacent the sacrificial layer. The sacrificial layer is removed exposing a mixed surface of the mixed layer, the mixed surface including portions of the first patterns and portions of the second patterns. A continuous is formed covering layer of a third material on the mixed surface by direct bonding.
摘要:
A process for transferring a thin film includes forming a layer of inclusions to create traps for gaseous compounds. The inclusions can be in the form of one or more implanted regions that function as confinement layers configured to trap implanted species. Further, the inclusions can be in the form of one or more layers deposited by a chemical vapor deposition, epitaxial growth, ion sputtering, or a stressed region or layer formed by any of the aforementioned processes. The inclusions can also be a region formed by heat treatment of an initial support or by heat treatment of a layer formed by any of the aforementioned processes, or by etching cavities in a layer. In a subsequent step, gaseous compounds are introduced into the layer of inclusions to form micro-cavities that form a fracture plane along which the thin film can be separated from a remainder of the substrate.
摘要:
An assembly method to enable local electrical bonds between zones located on a face of a first substrate and corresponding zones located on a face of a second substrate, the faces being located facing each other, at least one of the substrates having a surface topography. The method forms an intermediate layer including at least one burial layer on the face of the substrate or substrates having a surface topography to make it (them) compatible with molecular bonding of the faces of substrates to each other from a topographic point of view, resistivity and/or thickness of the intermediate layer being chosen to enable the local electrical bonds, brings the two faces into contact, the substrates positioned to create electrical bonds between areas on the first substrate and corresponding areas on the second substrate, and bonds the faces by molecular bonding.
摘要:
The invention generally pertains to the field of solid immersion lenses for optical applications in high resolution microscopy. The lens of the invention includes a spherical sector limited by a planar surface and an object having nanometric dimensions arranged on the planar surface at the focus of said solid immersion lens. A light-opaque layer having a central opening with nanometric dimensions can be provided on the planar surface, said opening being centred on the focus of the solid immersion lens. The nano-object can be a tube or a thread having a cylindrical shape. The lens of the invention can be made using lithography techniques.
摘要:
A method of making a complex microelectronic structure by assembling two substrates through two respective linking surfaces, the structure being designed to be dissociated at a separation zone. Prior to assembly, in producing a state difference in the tangential stresses between the two surfaces to be assembled, the state difference is selected so as to produce in the assembled structure a predetermined stress state at the time of dissociation.