Abstract:
A process for treating C.sub.3 to C.sub.12 petroleum fractions, such as a light cracked naphtha to be used as an etherification feed stock in which H.sub.2 S is removed by distillation of at least the C.sub.3 fraction and mercaptans and diolefins are removed simultaneously in a distillation column reactor using a dual catalyst bed. The mercaptans and H.sub.2 S are reacted with the diolefins in the presence of a reduced nickel catalyst to form sulfides which are higher boiling than the portion of the feed which is fractionated to an upper hydrogenation catalyst bed of palladium for hydrogenating diolefins and acetylenes. The higher boiling sulfides are removed as bottoms along with heavier materials. Any diolefins not converted to sulfides and acetylenes are selectively hydrogenated to mono-olefins in the presence of a palladium oxide catalyst in an upper bed, producing overheads, substantially free of sulfur compounds, diolefins and acetylenes.
Abstract:
Improved Ni catalysts for hydrogenation reactions are disclosed. The catalysts are useful for hydrogenation such as selective hydrogenation of acetylenic impurities in crude olefin and diolefin streams. The catalysts are prepared by depositing nickel on a porous support which has the following specific physical properties; BET surface area of from 30 to about 100 m2/g, total nitrogen pore volume of from 0.4 to about 0.9 cc/g, and an average pore diameter of from about 110 to 450 Å with or without modifiers of one or more elements selected from the group consisting of Cu, Re, Pd, Zn, Mg, Mo, Ca and Bi.
Abstract:
A process for the removal of vinylacetylene, ethylacetylene and 1,2-butadiene from C.sub.4 aliphatic hydrocarbon streams comprising, concurrently: (1) feeding hydrogen and a hydrocarbon stream comprising C.sub.4 hydrocarbons including butanes, butenes, butadienes and vinylacetylene to a distillation column reactor containing a bed comprising a hydrogenation catalyst of the type characterized by platinum, palladium or rhodium which is prepared as a distillation structure to selectively hydrogenate a portion of the vinylacetylene and the 1,2-butadiene and (2) fractionally distilling the reaction mixture to remove a heavier fraction and removing a fraction overhead comprising substantially all of the C.sub.4.
Abstract:
A process for the hydrogenation of unsaturated cyclic and polycyclic compounds to saturates is provided wherein the reactor is operated at a pressure wherein the reaction mixture is boiling under low hydrogen partial pressure in the range of about 0.1 psi to less than 70 psia at 0 to 350 psig. The catalyst is provided as a catalytic distillation structure such that the reaction is concurrently occurring with a distillation. A portion of the overheads is returned as reflux to provide cooling within the catalyst bed and concurrent condensation of some of the gaseous material within the bed. Although no separation is obtained all of the advantages of concurrent reaction with distillation are achieved.
Abstract:
Improved Ni catalysts for hydrogenation reactions are disclosed. The catalysts are useful for hydrogenation such as selective hydrogenation of acetylenic impurities in crude olefin and diolefin streams. The catalysts are prepared by depositing nickel on a porous support which has the following specific physical properties; BET surface area of from 30 to about 100 m2/g, total nitrogen pore volume of from 0.4 to about 0.9 cc/g, and an average pore diameter of from about 110 to 450 Å with or without modifiers of one or more elements selected from the group consisting of Cu, Re, Pd, Zn, Mg, Mo, Ca and Bi.
Abstract:
The hydroconversion of heavy petroliferous stocks boiling mainly above 400.degree. F. is carried out in a distillation column reactor where concurrently a petroleum stream is fed into a feed zone; hydrogen is fed at a point below said feed zone; the petroleum stream is distilled and contacted in the presence of a cracking catalyst prepared in the form of a catalytic distillation structure at total pressure of less than about 300 psig and a hydrogen partial pressure in the range of 1.0 to less than 70 psia and a temperature in the range of 400 to 1000.degree. F. whereby a portion of the petroleum stream is cracked to lighter products boiling below the boiling point of the feed and products are distilled to remove a vaporous overhead stream comprising products mainly boiling below the boiling point of the feed and a liquid bottoms stream.
Abstract:
A process for the hydrodesulfurization of petroleum streams is disclosed wherein the sulfur containing petroleum stream is contacted along with hydrogen at a partial pressure of less than 70 psig in a distillation column reactor containing a hydrodesulfurization catalyst in the form of a catalytic distillation structure.
Abstract:
A process for the selective hydrogenation of dienes and acetylenes in a mixed hydrocarbon stream from a pyrolysis steam cracker in which a front end a one step acetylene hydrogenation is carried out using catalyst comprising (A) 1 to 30 wt. % based on the total weight of the catalyst of a catalytic component of nickel only or nickel and one or more elements selected from the group consisting of copper, rhenium, palladium, zinc, gold, silver, magnesium, molybdenum, calcium and bismuth deposited on (B) a support having the a BET surface area of from 1 to about 100 m2/gram, total nitrogen pore volume of from 0.2 to about 0.9 cc/gram and an average pore diameter of from about 110 to 450 Å under conditions of temperature and pressure to selectively hydrogenate acetylenes and dienes. The process hydrogenates the dienes and acetylenes to olefins without loss of ethylene and propylene in the light and heavy products which eliminates the need for further processing of the heavier stream. In addition the amount of polymerization in the lower part of the distillation column reactor is reduced.
Abstract:
A process for the production of tertiary ethers from the reaction of isoolefins with lower alcohols, such as methanol, uses two distillation column reactors in series to maximize conversion, especially for isopentenes and isohexenes. The second distillation column reactor may be concurrently used as a C5 polishing reactor and a reactor for producing MTBE or ETBE from isobutene, for example.
Abstract:
A process for the hydrodesulfurization of a diesel boiling range petroleum fraction wherein the hydrodesulfurization is carried out concurrently with a fractional distillation in a distillation column reactor containing a catalyst bed. The diesel is fed above the catalyst bed and hydrogen is fed below the bed. The heat for the distillation is provided by the heat of reaction of the hydrodesulfurization.