摘要:
A process for hydrocarbon conversion, comprising: a) stripping or distilling a hydrocarbon effluent from a reactor comprising an ionic liquid catalyst having: a metal halide, and a hydrogen halide or an organic halide into a first and second fraction, and b) recycling at least a portion of the first fraction comprising at least 5 wt % and less than 95 wt % of the hydrogen halide to the reactor. A process comprising: a) stripping or distilling a hydrocarbon effluent from a reactor comprising an ionic liquid catalyst into a first fraction having at least 5 wt % of hydrogen halide and a second fraction having less than 25 wppm hydrogen halide; and b) recycling at least a portion of the first fraction to the reactor to improve the selectivity of products. A process comprising recycling of the catalyst, the first fraction, and a portion of the second fraction that is an isoparaffin to the reactor.
摘要:
A process for hydrocarbon conversion, comprising: a) stripping or distilling a hydrocarbon effluent from a reactor comprising an ionic liquid catalyst having: a metal halide, and a hydrogen halide or an organic halide into a first and second fraction, and b) recycling at least a portion of the first fraction comprising at least 5 wt % and less than 95 wt % of the hydrogen halide to the reactor. A process comprising: a) stripping or distilling a hydrocarbon effluent from a reactor comprising an ionic liquid catalyst into a first fraction having at least 5 wt % of hydrogen halide and a second fraction having less than 25 wppm hydrogen halide; and b) recycling at least a portion of the first fraction to the reactor to improve the selectivity of products. A process comprising recycling of the catalyst, the first fraction, and a portion of the second fraction that is an isoparaffin to the reactor.
摘要:
A process for making products with low hydrogen halide, comprising: a) stripping or distilling an effluent from a reactor into a first fraction having an amount of hydrogen halide, and a second fraction having a reduced amount of hydrogen halide; wherein the reactor comprises: an ionic liquid catalyst having a metal halide, and a hydrogen halide or an organic halide; and b) recovering one or more product streams, from the second fraction, having less than 25 wppm hydrogen halide. In one embodiment the ionic liquid catalyst has metal halide; and the recovering recovers propane, n-butane, and alkylate gasoline having less than 25 wppm hydrogen halide. In another embodiment the recovering uses a distillation column having poor corrosion resistance to hydrogen halide; and the distillation column does not exhibit corrosion. There is also provided an alkylate gasoline having less than 5 wppm hydrogen halide, a high RON, and low RVP.
摘要:
A process for making products with low hydrogen halide, comprising: a) stripping or distilling an effluent from a reactor into a first fraction having an amount of hydrogen halide, and a second fraction having a reduced amount of hydrogen halide; wherein the reactor comprises: an ionic liquid catalyst having a metal halide, and a hydrogen halide or an organic halide; and b) recovering one or more product streams, from the second fraction, having less than 25 wppm hydrogen halide. In one embodiment the ionic liquid catalyst has metal halide; and the recovering recovers propane, n-butane, and alkylate gasoline having less than 25 wppm hydrogen halide. In another embodiment the recovering uses a distillation column having poor corrosion resistance to hydrogen halide; and the distillation column does not exhibit corrosion. There is also provided an alkylate gasoline having less than 5 wppm hydrogen halide, a high RON, and low RVP.
摘要:
A process for regenerating a spent ionic liquid catalyst including (a) applying a voltage across one or more pairs of electrodes immersed in a spent ionic liquid catalyst comprising conjunct polymer-metal halide complexes to provide freed conjunct polymers and a regenerated ionic liquid catalyst; and (b) separating the freed conjunct polymers from the regenerated ionic liquid catalyst is described. An alkylation process incorporating the regeneration process is also described.
摘要:
A process comprising adjusting a level of conjunct polymers in an ionic liquid catalyst between a low level that favors production of C5+ products boiling at 137.8° C. or below and a higher level that favors production of both C5+ products boiling at 137.8° C. or below and C5+ products boiling above 137.8° C.; wherein the adjusting is done in response to market demand. A process unit, comprising a reactor that operates with an ionic liquid catalyst comprising a low level or a higher level of conjunct polymers, and the alkylation reactor is switched between operating with the low and the higher levels in response to market demand. A process unit, comprising a reactor that operates in an alkylate mode and a distillate mode, and a catalyst regenerator that operates with varying severity to adjust the level of conjunct polymers in response to demand for gasoline or distillate.
摘要:
A process comprising adjusting a level of conjunct polymers in an ionic liquid catalyst between a low level that favors production of C5+ products boiling at 137.8° C. or below and a higher level that favors production of both C5+ products boiling at 137.8° C. or below and C5+ products boiling above 137.8° C.; wherein the adjusting is done in response to market demand. A process unit, comprising a reactor that operates with an ionic liquid catalyst comprising a low level or a higher level of conjunct polymers, and the alkylation reactor is switched between operating with the low and the higher levels in response to market demand. A process unit, comprising a reactor that operates in an alkylate mode and a distillate mode, and a catalyst regenerator that operates with varying severity to adjust the level of conjunct polymers in response to demand for gasoline or distillate.
摘要:
The present invention is directed to a hydroprocessing catalyst containing at least one catalyst support, one or more metals, optionally one or more molecular sieves, optionally one or more promoters, wherein deposition of at least one of the metals is achieved in the presence of a modifying agent.
摘要:
Methods for starting and operating ionic liquid catalyzed hydrocarbon conversion processes and systems to provide maximum process efficiency, system reliability and equipment longevity may include: purging air and free water from at least a portion of the system; introducing at least one reactant into the at least a portion of the system; and re-circulating the at least one reactant through the at least a portion of the system, via at least one feed dryer unit, until the at least one reactant exiting the at least a portion of the system has a water content at or below a threshold value, prior to the introduction of an ionic liquid catalyst and/or additional reactant(s) and feeds into the system.
摘要:
Processes for the catalytic dechlorination of one or more hydrocarbon products involve contacting a mixture comprising the hydrocarbon product(s) and a carrier gas with a dechlorination catalyst under catalytic dechlorination conditions to provide a dechlorinated hydrocarbon product, HCl, and the carrier gas. The dechlorinated hydrocarbon product may be separated from the HCl and the carrier gas to provide liquid fuel or lubricating base oil.