摘要:
A test kit for a semiconductor package and a method of testing a semiconductor package using the same are provided. The test kit may include a pick-and-place tool for loading/unloading a semiconductor package, a head assembly for guiding a semiconductor package released from the pick-and-place tool, and a socket for receiving the semiconductor package from the pick-and-place tool. The method may include performing pre-alignment by inserting one or more slide posts of an alignment tool into a socket, releasing a semiconductor package through a package guider, and attaching the semiconductor package onto a socket.
摘要:
A forced air heat exhaust type of burn-in test apparatus for packages: A first air supply duct provides air to the burn-in chamber and a second air supply duct provides air to supply tubes that direst air into the test sockets that hold the packages. The test sockets have a structure that allows air ventilation of the conductive balls. Accordingly, the apparatus can control the temperature around the packages as well as the temperature in the burn-in chamber, thus preventing conductive ball-melting.
摘要:
In one embodiment, a connector is made using a mixture of insulating silicone powder and conductive powder. The connector comprises a connector body formed from the insulating silicone powder and on or more preferably regularly arrayed conductive silicone members that are formed by migrating the conductive powder to a site of the connector corresponding to a solder ball of the semiconductor package. The conductive silicone member comprises a high-density conductive silicone part formed to be proximate an upper surface of the connector body and to protrude therefrom and a low-density conductive silicone part formed in substantial vertical alignment beneath the high-density conductive silicone part, the low-density conductive silicone part having a lower surface exposed from a lower surface of the connector body.
摘要:
A forced air heat exhaust type of burn-in test apparatus for packages: A first air supply duct provides air to the burn-in chamber and a second air supply duct provides air to supply tubes that direst air into the test sockets that hold the packages. The test sockets have a structure that allows air ventilation of the conductive balls. Accordingly, the apparatus can control the temperature around the packages as well as the temperature in the burn-in chamber, thus preventing conductive ball-melting.
摘要:
In one embodiment, a connector is made using a mixture of insulating silicone powder and conductive powder. The connector comprises a connector body formed from the insulating silicone powder and on or more preferably regularly arrayed conductive silicone members that are formed by migrating the conductive powder to a site of the connector corresponding to a solder ball of the semiconductor package. The conductive silicone member comprises a high-density conductive silicone part formed to be proximate an upper surface of the connector body and to protrude therefrom and a low-density conductive silicone part formed in substantial vertical alignment beneath the high-density conductive silicone part, the low-density conductive silicone part having a lower surface exposed from a lower surface of the connector body.
摘要:
A test apparatus for testing a multi-chip package comprising a multiplicity of semiconductor chips, which includes a test driver having one drive channel and at least one input/output channel. A test board is mounted with the multi-chip package. Drive pins of the semiconductor chips are parallel connected to the drive channel, and input/output pins of the semiconductor chips are parallel connected to the input/output channel.
摘要:
A test apparatus for testing a multi-chip package comprising a multiplicity of semiconductor chips, which includes a test driver having one drive channel and at least one input/output channel. A test board is mounted with the multi-chip package. Drive pins of the semiconductor chips are parallel connected to the drive channel, and input/output pins of the semiconductor chips are parallel connected to the input/output channel.
摘要:
Embodiments of the invention connect a plurality of devices under test (DUTS) in a parallel manner and a high test current is selectively applied to each DUT. The apparatus to test a plurality of DUTs includes a plurality of power sources providing the test current to a plurality of DUTs; and switching devices connected to the respective DUTs and power sources and selectively providing the test current. In addition, the apparatus has at least one control unit to control the switching devices. Furthermore, a group of DUTs from the plurality of DUTs is connected between two of the plurality of power sources in a parallel manner, and the test current is selectively provided to one DUT from the group of DUTs according to the operation of the switching devices.
摘要:
Embodiments of the invention connect a plurality of devices under test (DUTS) in a parallel manner and a high test current is selectively applied to each DUT. The apparatus to test a plurality of DUTs includes a plurality of power sources providing the test current to a plurality of DUTs; and switching devices connected to the respective DUTs and power sources and selectively providing the test current. In addition, the apparatus has at least one control unit to control the switching devices. Furthermore, a group of DUTs from the plurality of DUTs is connected between two of the plurality of power sources in a parallel manner, and the test current is selectively provided to one DUT from the group of DUTs according to the operation of the switching devices.
摘要:
A test board for a semiconductor device tester having a modified input/output printed circuit pattern and a testing method using the same are provided. In an embodiment, a modified input/output printed circuit pattern is formed and controlled by a test program, wherein the modified input/output printed circuit pattern is divided into a drive terminal and a comparator terminal, one of the terminals being connected to one input pin of a device under test (DUT) and the other being connected to an output pin of the DUT, unlike a typical input/output printed circuit pattern of the test board that is formed to be connected to one output pin of a DUT. Thus, it is possible to increase the number of devices under parallel test and to test semiconductor memory devices having larger capacity by using limited resources of the tester.