Abstract:
A piston ring is provided with a thermal spray coating that contains tungsten carbide and chrome carbide as a hard phase, and contains nickel as a metallic binder phase, and is characterized in that the thermal spray coating is formed by the spraying of a thermal spray powder that has been produced by means of a granulation sintering method, and that contains hard particles in which the mean particle diameter of the tungsten carbide has been adjusted by means of a BET method to fall within a range of not less than 0.15 μm and not more than 0.45 μm.
Abstract:
A uniflow scavenging two-cycle engine includes an scavenging port having a swirling guide portion that guides scavenging gas into a cylinder in a direction inclined with respect to a radial direction of the cylinder, and a center guide portion that is provided to be closer to a crank side of the cylinder than the swirling guide portion and guides the scavenging gas further toward the center side of the cylinder than the swirling guide portion. At least a part of the center guide portion faces a piston when the piston is positioned at bottom dead center during the high compression ratio mode, and the center guide portion and the piston do not face each other or an area of facing the piston is smaller than that during the high compression ratio mode when the piston is positioned at bottom dead center during the low compression ratio mode.
Abstract:
Provided is a crosshead engine that includes: a cylinder; a piston; a piston rod; a crosshead; a connecting rod; a crankshaft; and a variable mechanism varies positions of top and bottom dead centers of the piston by changing a relative position between the piston rod and the crosshead in a stroke direction of the piston. The variable mechanism includes: a hydraulic pressure chamber which is provided in the crosshead and into which an end of the piston rod is inserted; and a hydraulic pressure adjustment mechanism which supplies hydraulic oil to the hydraulic pressure chamber or discharges the hydraulic oil from the hydraulic pressure chamber and which adjusts an entering position at which the end of the piston rod is inserted into the hydraulic pressure chamber in the stroke direction.
Abstract:
The two-cycle engine includes a piston capable of reciprocating along a cylinder, the piston being provided with piston rings; and a lubrication port provided in the cylinder, the lubrication port being used to supply a lubricant to a sliding surface of the cylinder on which the piston rings slide. Inter-ring spaces are provided, each inter-ring space being between adjacent piston rings. In addition, the two-cycle engine includes a controller used to adjust a lubrication period of lubricating from the lubrication port during movement of the piston toward a top dead center thereof, so that a period before an uppermost inter-ring space passing by the lubrication port is excluded from the lubrication period and a period in which at least part of a lowermost inter-ring space faces the lubrication port is included in the lubrication period.
Abstract:
A uniflow scavenging 2-cycle engine includes a cylinder; a piston sliding in the cylinder; scavenging ports formed in an inner circumferential surface of one end of the cylinder in a piston stroke direction and suctioning an active gas into the combustion chamber according to the piston sliding motion; fuel injection valves inject a fuel gas into the active gas suctioned into the combustion chamber; and an exhaust port formed in the other end of the cylinder. An exhaust valve driving mechanism opens and closes exhaust valves such that a time required to displace an exhaust valve from a fully opened position to a fully closed position is longer than that required to displace the exhaust valve from the fully closed position to the fully opened position. With this constitution, an injection start timing of the fuel gas can be advanced while blow-by of the fuel gas is suppressed.
Abstract:
Provided is an engine that includes a first member, a second member, a first hydraulic pressure chamber formed between facing parts of the first and second members, and a hydraulic pressure adjustment mechanism. The hydraulic pressure adjustment mechanism has a plunger pump having a pump cylinder and a plunger and configured to supply hydraulic oil in the pump cylinder to the first hydraulic pressure chamber by pushing the plunger into the pump cylinder. The plunger pump moves in a stroke direction along with a piston and a power transmission section, and the plunger is pushed into the pump cylinder by receiving a reaction force opposite to reciprocating forces of the piston and the power transmission section.
Abstract:
A uniflow-scavenging-type two-cycle engine includes: a cylinder; a piston that slides in the cylinder; an exhaust port that is provided at a first end of the cylinder; an exhaust valve that opens and closes the exhaust port; a scavenging port that is provided in an inner circumferential surface of a second end of the cylinder in the stroke direction of the piston and inhales an active gas into a combustion chamber in accordance with a sliding movement of the piston; a plurality of fuel injection valves that inject a fuel gas to the active gas, which has been drawn in from the scavenging port to the combustion chamber, to thereby generate a premixed gas; and a fuel injection control unit that varies injection directions of fuel gas injected from a part or all of the fuel injection valves.
Abstract:
A uniflow scavenging 2-cycle engine includes a cylinder inside which a combustion chamber is formed; a piston which slides within the cylinder; a scavenge port which is provided on one end side in a stroke direction of the piston in the cylinder to suck an active gas into the combustion chamber in accordance with the sliding movement of the piston; and a fuel injection unit which has an injection port located on the outside of the cylinder, and injects the fuel gas into the active gas sucked into the scavenge port.
Abstract:
A two-stroke uniflow engine is provided with: a cylinder; a piston; an exhaust valve that is opened and closed in order to discharge exhaust gas that is generated inside the cylinder; a scavenging port that takes active gas into the interior of the cylinder in accordance with a sliding movement of the piston; a fuel injection port that is provided in the internal circumferential surface of the cylinder; a fuel injection valve that injects fuel gas into the fuel injection port; and a fuel injection control unit that executes control of the injection of the fuel gas in the fuel injection valve, wherein the fuel injection control unit decides at least one of an injection pressure and an injection time of the fuel injection valve based on a change in pressure inside the cylinder that is caused by a reciprocating movement of the piston.