Abstract:
A method for detecting nucleic acids by (a) providing a sample having target nucleic acids, each nucleic acid having contiguous first, second, and third domains; (b) contacting the sample with probe sets to form hybridization complexes, wherein each probe set includes (i) a first probe having a sequence that is complementary to the first domain; and (ii) a second probe having a sequence substantially complementary to the third domain; (c) extending the first probes along the second domains of the complexes while the complexes are immobilized on a solid support; (d) ligating the extended first probes to the second probes to form templates; (e) amplifying the templates with primers that are complementary to the first and second priming sequences to produce amplicons; and (f) detecting the amplicons on the surface of a nucleic acid array.
Abstract:
Presented herein are methods and compositions for multiplexed single cell gene expression analysis. Some methods and compositions include the use of droplets and/or beads bearing unique barcodes such as unique molecular barcodes (UMI).
Abstract:
Presented are methods and compositions for obtaining sequence information from one or more individual cells. The methods are useful for obtaining sequence information for a single nucleotide sequence, and for multiplex generation of sequence information from one or more individual cells.
Abstract:
Disclosed is a gene expression panel that can be used to predict prostate cancer (PCa) progression. Some embodiments provide methods for predicting clinical recurrence of PCa. Some embodiments provide a method for predicting progression of prostate cancer in an individual, the method comprising: (a) receiving expression levels of a collection of signature genes from a biological sample taken from said individual, wherein said collection of signature genes comprises at least two genes selected from the group consisting of: NKX2-1, UPK1A, ADRA2C, ABCC11, MMP11, CPVL, ZYG11A, CLEC4F, OAS2, PGC, UPK3B, PCBP3, ABLIM1, EDARADD, GPR81, MYBPC1, F10, KCNA3, GLDC, KCNQ2, RAPGEF1, TUBB2B, MB, DUOXA1, C2orf43, DUOX1, PCA3 and NPR3; (b) applying the expression levels to a predictive model relating expression levels of said collection of signature genes with prostate cancer progression; and (c) evaluating an output of said predictive model to predict progression of prostate cancer in said individual. Systems are also provided for predicting progression and/or recurrence of PCa.
Abstract:
Presented herein are methods and compositions for determining haplotypes in a sample. The methods are useful for obtaining sequence information regarding, for example, HLA type and haplotype. Also presented herein are methods of determining haplotypes in a sample based on a plurality sequence reads.
Abstract:
Presented are methods and compositions for obtaining sequence information from one or more individual cells. The methods are useful for obtaining sequence information for a single nucleotide sequence, and for multiplex generation of sequence information from one or more individual cells.
Abstract:
A method for detecting nucleic acids by (a) providing a sample having target nucleic acids, each nucleic acid having contiguous first, second, and third domains; (b) contacting the sample with probe sets to form hybridization complexes, wherein each probe set includes (i) a first probe having a sequence that is complementary to the first domain; and (ii) a second probe having a sequence substantially complementary to the third domain; (c) extending the first probes along the second domains of the complexes while the complexes are immobilized on a solid support; (d) ligating the extended first probes to the second probes to form templates; (e) amplifying the templates with primers that are complementary to the first and second priming sequences to produce amplicons; and (f) detecting the amplicons on the surface of a nucleic acid array.
Abstract:
A method for detecting nucleic acids by (a) providing a sample having target nucleic acids, each nucleic acid having contiguous first, second, and third domains; (b) contacting the sample with probe sets to form hybridization complexes, wherein each probe set includes (i) a first probe having a sequence that is complementary to the first domain; and (ii) a second probe having a sequence substantially complementary to the third domain; (c) extending the first probes along the second domains of the complexes while the complexes are immobilized on a solid support; (d) ligating the extended first probes to the second probes to form templates; (e) amplifying the templates with primers that are complementary to the first and second priming sequences to produce amplicons; and (f) detecting the amplicons on the surface of a nucleic acid array.
Abstract:
The present invention is directed to methods and compositions for the use of microsphere arrays to detect and quantify a number of nucleic acid reactions. The invention finds use in genotyping, i.e. the determination of the sequence of nucleic acids, particularly alterations such as nucleotide substitutions (mismatches) and single nucleotide polymorphisms (SNPs). Similarly, the invention finds use in the detection and quantification of a nucleic acid target using a variety of amplification techniques, including both signal amplification and target amplification. The methods and compositions of the invention can be used in nucleic acid sequencing reactions as well. All applications can include the use of adapter sequences to allow for universal arrays.
Abstract:
The present invention is directed to methods and compositions for the use of micro sphere arrays to detect and quantify a number of nucleic acid reactions. The invention finds use in genotyping, i.e. the determination of the sequence of nucleic acids, particularly alterations such as nucleotide substitutions (mismatches) and single nucleotide polymorphisms (SNPs). Similarly, the invention finds use in the detection and quantification of a nucleic acid target using a variety of amplification techniques, including both signal amplification and target amplification. The methods and compositions of the invention can be used in nucleic acid sequencing reactions as well. All applications can include the use of adapter sequences to allow for universal arrays.