Abstract:
A bionic apparatus is provided. The bionic apparatus includes a flexible portion having a plurality of pores, a rigid portion connected with the flexible portion, and a supporting element disposed in the flexible portion. The pore size of each pore is between 50 μm to 500 μm. The flexible portion, the rigid portion and the supporting element are one-piece formed by a additive manufacturing process.
Abstract:
The present disclosure provides a device and method for powder distribution and an additive manufacturing method, wherein different size or kind of powders could be chosen to be accommodated within a receptacle. The receptacle can uniformly mix the powder by a rotation movement, pour out the powders by the rotation movement and distribute the powders for forming a layer by a translation movement. In another embodiment, the receptacle further comprises a heating element for preheating the powders. Not only can the present disclosure uniformly mix the powders so as to reduce the thermal deformation and distribute the powder layer compactly, but also can the present disclosure distribute different kinds of powder in different layer so as to increase the diversity in additive manufacturing.
Abstract:
A bionic fixing apparatus is provided. The bionic fixing apparatus includes a body having a through hole and at least one slit. The through hole penetrates the body from the top surface to the bottom surface to form a top opening and a bottom opening. An inner diameter of the top opening is larger than an inner diameter of the bottom opening. The slit is connected to the bottom opening and extends upwardly from the bottom surface of the body, such that the body has a flexible bottom portion.
Abstract:
A bionic fixing apparatus is provided. The bionic fixing apparatus includes a flexible portion having at least one trench. The trench is disposed on the surface of the flexible portion and has a first end and a second end. An interval is disposed between the first end and the second end. The trench is disposed for spreading the stress applied on the bionic fixing apparatus and preventing stress concentration and stress shielding.
Abstract:
A method for fabricating a medical device includes steps as follows: A degradable powder including at least one metal element is firstly provided on a target surface. A focused energy light bean is applied to sinter/cure the biodegradable powder within an oxygen-containing atmosphere; wherein the oxygen concentration of the oxygen-containing atmosphere is adjusted to provide a first oxygen concentration and a second concentration when the focused energy light is driven to a first location and second location of the target surface respectively. The aforementioned processes are then repeatedly carried out to form a three-dimensional (3D) structure of the medical device.
Abstract:
A smart mechanical component has a mechanical part main body; a mechanical part secondary body located inside of the mechanical part main body; a three dimensional three-dimensional (3-D) reserved space located between the mechanical part main body and the mechanical part secondary body; at least one connecting unit connecting the mechanical part main body and the mechanical part secondary body; wherein the mechanical part main body, the mechanical part secondary body and the three dimensional three-dimensional (3-D) reserved space form a capacitor; the connecting unit forms an inductor; the inductor and the capacitor forms an inductor-capacitor circuit.