Abstract:
The disclosed embodiments relate to a temporomandibular joint prosthesis including a joint portion, a fixation portion, and at least one flexible unit. The joint portion is configured to be as a temporomandibular joint and movably connected to cranial skeleton. The fixation portion is configured to be fixed on mandible. The flexible unit is located between and connected to the joint portion and the fixation portion. The fixation portion is movable with respect to the joint portion via the flexible unit.
Abstract:
A method for fabricating a medical device includes steps as follows: A degradable powder including at least one metal element is firstly provided on a target surface. A focused energy light bean is applied to sinter/cure the biodegradable powder within an oxygen-containing atmosphere; wherein the oxygen concentration of the oxygen-containing atmosphere is adjusted to provide a first oxygen concentration and a second concentration when the focused energy light is driven to a first location and second location of the target surface respectively. The aforementioned processes are then repeatedly carried out to form a three-dimensional (3D) structure of the medical device.
Abstract:
A smart mechanical component has a mechanical part main body; a mechanical part secondary body located inside of the mechanical part main body; a three dimensional three-dimensional (3-D) reserved space located between the mechanical part main body and the mechanical part secondary body; at least one connecting unit connecting the mechanical part main body and the mechanical part secondary body; wherein the mechanical part main body, the mechanical part secondary body and the three dimensional three-dimensional (3-D) reserved space form a capacitor; the connecting unit forms an inductor; the inductor and the capacitor forms an inductor-capacitor circuit.
Abstract:
The disclosure relates to a reconstruction prosthesis including a plurality of prosthesis units connected in series. Each of the prosthesis units includes a main part and a cushion structure. The main part has an abutment insertion opening and an accommodation space. The cushion structure is located in the accommodation space and movably located at the abutment insertion opening and defining an abutment mounting hole connected to the abutment insertion opening. The cushion structure is deformable with respect to the main part.
Abstract:
A biodegradable iron-based alloy composition, a medical implant applying the iron-based alloy composition, and a manufacturing method of the medical implant are provided. The biodegradable iron-based alloy composition includes at least 98 wt % of iron and 2 wt % or less of an additional material. The additional material includes 0.1 wt %-0.8 wt % of Mn, 0.01 wt %-0.15 wt % of Mo, 0.1 wt %-0.3 wt % of Cr, 0.02 wt %-0.15 wt % of C, and 0.01 wt %-0.15 wt % of Si.
Abstract:
A battery electrode structure includes a substrate, a first conductive layer and a plurality of active particles. The substrate has a substrate surface. The first conductive layer is disposed on the substrate surface. Each of the active particles has a first portion conformally engaged with a surface of the first conductive layer and a second portion protruding outwards from the surface of the first conductive layer.
Abstract:
This disclosure provides a composite beam generator and a method of performing powder melting or sintering in additive manufacturing process using the same. The composite beam generator comprises: a beam splitter for splitting a beam into a first directed beam and a second directed beam; a beam shaper for shaping a transverse energy distribution profile of the second directed beam to non-circular; at least one beam delivery unit for guiding the first directed beam or the second directed beam; and a beam combiner for receiving the first directed beam and the second directed beam, and respectively generating a first output beam and a second output beam, and combining them into the composite beam.
Abstract:
The disclosure relates to a reconstruction prosthesis including a main section, at least one serpentine structure, and at least one mount section. The at least one serpentine structure is connected to one end of the main section. The at least one mount section is connected to the main section via the at least one serpentine structure. The at least one mount section is configured to be connected to osseous tissue. When the at least one serpentine structure is deformed by force, the relative position of the main section and the at least one mount section is changed.