Abstract:
A method of forming a thermal insulation porous film includes mixing 100 parts by weight of polysilsesquioxane-containing polymer, 20 to 75 parts by weight of surfactant, and 20 to 2000 parts by weight of solvent to form a thermal insulation coating material, wherein the polysilsesquioxane-containing polymer in the thermal insulation coating material is tube-shaped or sheet-shaped. The thermal insulation coating material is coated on a substrate, and then dried and sintered to form a thermal insulation porous film.
Abstract:
A method of forming an antistatic plastic includes providing a mixture containing 10 parts by weight of crystalline silicon particles, 1 to 30 parts by weight of an encapsulant, and 0.5 to 25 parts by weight of a backsheet material. The mixture is compounded to form an antistatic plastic, wherein the encapsulant is different from the backsheet material.
Abstract:
An inorganic material for removing a harmful substance from wastewater is provided. The inorganic material includes a plurality of porous silicate particles having a glass phase structure, wherein the plurality of porous silicate particles include silicon dioxide, aluminum oxide, barium oxide, cesium oxide, and boron oxide, and have a zeta potential of a negative value at pH of from 1 to 5, and wherein the average pore diameter of the porous silicate particles is in a range of from 3 to 50 nm. Moreover, a method for preparing an inorganic material for removing a harmful substance from wastewater and a method for wastewater treatment are further provided.
Abstract:
method for diagnosing corrosion of an underground storage tank system is provided. The method includes the following steps. A sample from the underground storage tank system is collected, wherein the sample comprises at lease one metal ion. The species and the concentration of the metal ion in the sample are detected by an analysis instrument. A concentration threshold value is determined from a database according to the species of the metal ion. A mapping step is performed, wherein the concentration of the metal ion and the concentration threshold value are compared to diagnose if the underground storage tank system is corroded.
Abstract:
A method for diagnosing corrosion of an underground storage tank system is provided. The method includes the following steps. A sample from the underground storage tank system is collected, wherein the sample comprises at lease one metal ion. The species and the concentration of the metal ion in the sample are detected by an analysis instrument. A concentration threshold value is determined from a database according to the species of the metal ion. A mapping step is performed, wherein the concentration of the metal ion and the concentration threshold value are compared to diagnose if the underground storage tank system is corroded.
Abstract:
A method of forming a thermal insulation porous film includes mixing 100 parts by weight of polysilsesquioxane-containing polymer, 20 to 75 parts by weight of surfactant, and 20 to 2000 parts by weight of solvent to form a thermal insulation coating material, wherein the polysilsesquioxane-containing polymer in the thermal insulation coating material is tube-shaped or sheet-shaped. The thermal insulation coating material is coated on a substrate, and then dried and sintered to form a thermal insulation porous film.
Abstract:
An inorganic material for removing a harmful substance from wastewater is provided. The inorganic material includes a plurality of porous silicate particles having a glass phase structure, wherein the plurality of porous silicate particles include silicon dioxide, aluminum oxide, barium oxide, cesium oxide, and boron oxide, and have a zeta potential of a negative value at pH of from 1 to 5, and wherein the average pore diameter of the porous silicate particles is in a range of from 3 to 50 nm. Moreover, a method for preparing an inorganic material for removing a harmful substance from wastewater and a method for wastewater treatment are further provided.
Abstract:
Provided is an adsorption material including a plurality of porous silicate particles having a glass-phase structure and including silicon oxide, aluminum oxide, barium oxide, strontium oxide and boron oxide. An average pore size of the plurality of porous silicate particles is in a range of from 3 nm to 50 nm, and a zeta potential of the plurality of porous silicate particles is negative at a pH value of from 1 to 5. A method of fabricating the adsorption material is further provided.