Abstract:
A piezoelectric system comprises a piezoelectric sensor, a voltage stabilizer, a discharger and an operation sensor. The piezoelectric sensor outputs a sensing signal through a sensor output terminal according to a rate of change of pressure. The voltage stabilizer has a positive terminal electrically connecting with the sensor output terminal. The voltage stabilizer receives the sensing signal, stores the energy of the sensing signal, and keeps the voltage of the sensing signal as a constant when the rate of change of pressure is zero. The discharger has a first terminal connecting with the positive terminal, a second terminal coupled to ground, and a control terminal receiving a trigger signal to control the first terminal to conduct with or not conduct with the second terminal. The operation sensor electrically connects to the control terminal for sensing an operation generating the pressure and outputs the trigger signal accordingly.
Abstract:
An apparatus for generating a pulse train with an adjustable time interval is provided. The apparatus, being an annular optical cavity structure, includes a seed source receiving end, a pump source receiving end, an optical coupler, an optical combiner, a gain fiber, an optical path time regulator and a beam splitter. Thus, the apparatus is capable of generating a pulse train with an adjustable time interval to increase material processing quality and speed.
Abstract:
An electric signal reconstruction system includes a signal generator and a computing element. The signal generator has a time constant and is configured to generate a plurality of signal value corresponding to a plurality of time points within a time period, wherein the signal values include a designated value, the time points include a designated time point, and the designated value corresponds to the designated time point. The computing element is electrically connected to the signal generator and is configured to perform operations including: performing a differential calculation or an integral calculation according to the time points and the signal values to generate a fundamental value; calculating a correction constant associated with the time constant; calculating a product of the correction constant and the fundamental value as a correction value; calculating a sum of the correction value and the designated value as a reconstruction value; and outputting the reconstruction value.
Abstract:
Disclosed is a laser system and a laser flare machining method. The laser system includes a laser light source, a splitter element, and a scanning lens assembly. The laser light source projects a first light beam. The splitter element is furnished on a first path along which the first light beam travels, and splits the first light beam into a second light beam traveling along a second path and a third light beam traveling along a third path. The scanning lens assembly is furnished on the second path and the third path, and focus the second light beam and the third light beam at a machining position to process a work piece.
Abstract:
A laser device including a laser crystal, a first lens, an induced light source, a third light source and a second lens and a method for generating a laser light are disclosed. The laser crystal includes a gain medium, a first cross section and a second cross section. The first lens is located on the first cross section of the laser crystal. The induced light source is adapted to generate an induced light entering into the laser crystal through the first lens. The third light source is adapted to generate a third light which is adapted for emitting the laser crystal. The third light and the induced light are adapted to induce the liquid crystal to make the liquid crystal generate a first light and a second light.
Abstract:
A force sensing apparatus with bridge portion comprises a first case, a second case, and a force sensing module. The first case comprises a first annular portion, a first bridge portion, and an inner wall portion. The first bridge portion is connected to an outer periphery of the first annular portion. The inner wall portion is connected to an inner periphery of the first annular portion. The second case comprises a second annular portion, a second bridge portion, and an outer wall portion. The second bridge portion is connected to an inner periphery of the second annular portion. The outer wall portion is connected to an outer periphery of the second annular portion. A stiffness of the second annular portion along an axial direction is greater than a stiffness of the second bridge portion along the axial direction. The second case is disposed on the first case along the axial direction to form a space. The force sensing module is disposed in the space.
Abstract:
A spindle shaft device including a shaft, a first torque sensor, and a second torque sensor. The shaft extends along an axial direction and comprises a first side portion, a second side portion, and a central portion located between the first side portion and the second side portion. The central portion has a central torsional rigidity with respect to the axial direction. The first side portion has a first torsional rigidity with respect to the axial direction. The second side portion has a second torsional rigidity with respect to the axial direction. The first torsional rigidity is smaller than the central torsional rigidity. The second torsional rigidity is smaller than the central torsional rigidity. The first torque sensor is disposed on the first side portion. The second torque sensor is disposed on the second side portion.