Abstract:
A fuse arrangement, including: at least a first terminal, a second terminal, and a fuse, wherein the first terminal and the second terminal may be electrically connected via the fuse, and wherein the fuse may be configured to be under fuse internal mechanical stress to deform the fuse along its width direction in case it is broken.
Abstract:
A fuse arrangement, including: at least a first terminal, a second terminal, and a fuse, wherein the first terminal and the second terminal may be electrically connected via the fuse, and wherein the fuse may be configured to be under fuse internal mechanical stress to deform the fuse along its width direction in case it is broken.
Abstract:
A method of processing a semiconductor wafer includes forming semiconductor dies in the semiconductor wafer, each die having an active region containing devices of an integrated circuit and an edge region surrounding the active region, adjacent ones of the dies being separated by a scribe line. The method further includes forming interconnect wiring over the active region of each semiconductor die in an interlayer dielectric, forming ancillary wiring over the edge region of each die in the interlayer dielectric, forming a passivation on the interlayer dielectric, forming bond pads over the interconnect wiring of each die, the bond pads of each die being in electrical connection with the interconnect wiring of that die, and forming additional bond pads over the ancillary wiring of each semiconductor die, the additional bond pads of each die being in electrical connection with the interconnect wiring of that die.
Abstract:
A semiconductor device and method of making a semiconductor device are disclosed. A semiconductor body, a floating gate poly and a source/drain region are provided. A metal interconnect region with a control gate node is provided that capacitively couples to the floating gate poly.
Abstract:
A method of processing a semiconductor wafer includes forming semiconductor dies in the semiconductor wafer, each die having an active region containing devices of an integrated circuit and an edge region surrounding the active region, adjacent ones of the dies being separated by a scribe line. The method further includes forming interconnect wiring over the active region of each semiconductor die in an interlayer dielectric, forming ancillary wiring over the edge region of each die in the interlayer dielectric, forming a passivation on the interlayer dielectric, forming bond pads over the interconnect wiring of each die, the bond pads of each die being in electrical connection with the interconnect wiring of that die, and forming additional bond pads over the ancillary wiring of each semiconductor die, the additional bond pads of each die being in electrical connection with the interconnect wiring of that die.
Abstract:
A wafer has a number of IC areas and a kerf area arranged between the IC areas. The kerf area has a dicing area, a crack stop structure arranged between an IC area and a dicing area, and a trench arranged between the crack stop structure and the dicing area. The crack stop structure includes an extended layer extending beyond the crack stop structure towards the dicing area.
Abstract:
A fuse arrangement, including: at least a first terminal, a second terminal, and a fuse, wherein the first terminal and the second terminal may be electrically connected via the fuse, and wherein the fuse may be configured to be under fuse internal mechanical stress to deform the fuse along its width direction in case it is broken.
Abstract:
A fuse arrangement, including: at least a first terminal, a second terminal, and a fuse, wherein the first terminal and the second terminal may be electrically connected via the fuse, and wherein the fuse may be configured to be under fuse internal mechanical stress to deform the fuse along its width direction in case it is broken.
Abstract:
A semiconductor device and method of making a semiconductor device are disclosed. A semiconductor body, a floating gate poly and a source/drain region are provided. A metal interconnect region with a control gate node is provided that capacitively couples to the floating gate poly.
Abstract:
A semiconductor die includes a semiconductor substrate having an edge region surrounding an active region, the active region containing devices of an integrated circuit. The semiconductor die further includes interconnect wiring over the active region in an interlayer dielectric and electrically connected to the devices in the active region, and ancillary wiring over the edge region in the interlayer dielectric and isolated from the interconnect wiring and the devices in the active device region. The interlayer dielectric is passivated, and bond pads are provided over the interconnect wiring and electrically connected to the interconnect wiring through openings in the passivation over the active region. Additional bond pads are provided over the ancillary wiring and are electrically connected to the interconnect wiring through additional openings in the passivation over the active region.