Abstract:
A radar system for a vehicle includes an antenna element installable at an outer shell of the vehicle, a dielectric waveguide, and a radar circuit configured to communicate with the antenna element via the dielectric waveguide.
Abstract:
A semiconductor package having an antenna; and a semiconductor die which is coupled to the antenna and comprises a transmitter configured to transmit wirelessly via the antenna a wireless signal having information on a local oscillator signal to a further semiconductor package comprising a further semiconductor die.
Abstract:
A wireless communication system includes a first semiconductor module and a second semiconductor module. The first semiconductor module includes a semiconductor die connected to an antenna structure. The semiconductor die of the first semiconductor module and the antenna structure of the first semiconductor module are arranged within a common package. The semiconductor die of the first semiconductor module includes a transmitter module configured to transmit the wireless communication signal through the antenna structure of the first semiconductor module. The second semiconductor module includes a semiconductor die connected to an antenna structure. The semiconductor die of the second semiconductor module includes a receiver module configured to receive the wireless communication signal through the antenna structure of the second semiconductor module from the first semiconductor module.
Abstract:
A radar system for a vehicle includes an antenna element installable at an outer shell of the vehicle, a dielectric waveguide, and a radar circuit configured to communicate with the antenna element via the dielectric waveguide. A vehicle includes a plurality of radar radio heads arranged at an outer shell of the vehicle, a plurality of waveguides, and a radar circuit configured to generate a common local oscillator signal and simultaneously provide respective radio frequency signal derived from the common local oscillator signal to the plurality of radar radio heads via the plurality of waveguides.
Abstract:
A semiconductor radar module includes an integrated circuit (IC) radar device embedded within a wafer level package compound layer, the wafer level package compound layer extending at least partially lateral to the IC radar device. An interface layer abutting the wafer level package compound layer comprises a redistribution layer coupled to the IC radar device for connecting the IC radar device externally. An underfill material extends between the interface layer and an external substrate and abuts the interface layer and the external substrate. The interface layer is disposed between the wafer level package compound layer and the underfill material.
Abstract:
A semiconductor module comprises an integrated circuit device, the IC device embedded in a compound material, wherein the compound material at least partially extends lateral to the IC device. The semiconductor module further comprises interconnect structures arranged lateral to the IC device to provide at least one external electrical contact; a patch antenna structure integrated in the semiconductor module and electrically connected to the IC device and a layer interfacing the IC device and the compound, wherein the layer comprises first and second planar metal structures coupled to the IC device, wherein the first planar metal structure is electrically connected to the IC device and the interconnect structures and wherein the second planar metal structure is electrically connected to the IC device and the patch antenna structure.
Abstract:
Electronic apparatus having an antenna chip with a substrate and an antenna structure, and a method of producing the same. The antenna chip is integrated or packaged in a package having a chip mounting surface for mounting the antenna chip, and an encapsulating material. The encapsulating material typically is a plastic mold used in the industrial packaging of integrated circuits. Between the antenna structure and the chip mounting surface, a first void is disposed in the substrate.
Abstract:
A semiconductor module comprises components in one wafer level package. The module comprises an integrated circuit (IC) chip embedded within a package molding compound. The package comprises a molding compound package layer coupled to an interface layer for integrating an antenna structure and a bonding interconnect structure to the IC chip. The bonding interconnect structure comprises three dimensional interconnects. The antenna structure and bonding interconnect structure are coupled to the IC chip and integrated within the interface layer in the same wafer fabrication process.
Abstract:
A semiconductor module comprises components in one wafer level package. The module comprises an integrated circuit (IC) chip embedded within a package molding compound. The package comprises a molding compound package layer coupled to an interface layer for integrating an antenna structure and a bonding interconnect structure to the IC chip. The bonding interconnect structure comprises three dimensional interconnects. The antenna structure and bonding interconnect structure are coupled to the IC chip and integrated within the interface layer in the same wafer fabrication process.
Abstract:
A system includes a movable part that is rotatably movable, the movable part comprising a first portion and a second portion; transceiver circuitry configured to transmit a radio signal towards the movable part and to receive a receive radio signal from the movable part; and evaluation circuitry configured to determine a rotational position of the movable part based on the receive radio signal. The first portion of the movable part has a first electromagnetic reflectivity for the radio signal and the second portion of the movable part has a second electromagnetic reflectivity for the radio signal. The first electromagnetic reflectivity differs from the second electromagnetic reflectivity.