Abstract:
Disclosed are a 3D printing device, and a method for preparing a 3D printed structure. The device comprises a curing system, and a curing pattern player, a flat curing surface with de-wettability, and a receiving base capable of moving upwards and away from the flat curing surface, with same being successively arranged above the curing system, wherein a curing medium provided by the curing system passes through the curing pattern, so that ink between the flat curing surface and the receiving base is cured.
Abstract:
Disclosed are a 3D printing device, and a method for preparing a 3D printed structure. The device comprises a curing system (1), and a curing pattern player (6), a flat curing surface (2) with dewettability, and a receiving base (4) capable of moving upwards and away from the flat curing surface, with same being successively arranged above the curing system (1), wherein a curing medium provided by the curing system (1) passes through the curing pattern, so that ink between the flat curing surface (2) and the receiving base (4) is cured.
Abstract:
A method for preparing nano-silver powder dispersible in environment friendly weak solvents, and an electrically conductive ink comprising the nano-silver powder are disclosed. The disclosure describes a disperser dissoluble in water and weak solvents and an alcohol amine as reducing agent to prepare mono-dispersed nano-silver, and employs ultrafiltration for purification and spray drying process to obtain a nano-silver powder dispersible in weak solvents, and thereby obtain an eco-solvent nano-silver electrically conductive ink. The electrically conductive ink in accordance with the disclosure has advantages of high safety, low volatility, low toxicity, high flash point, resistant to ultraviolet radiation and moisture etc., and can be used with uncoated bearing substrates, and is suitable for use in outdoor environments.
Abstract:
A method for preparing nano-silver powder dispersible in environment friendly weak solvents, and an electrically conductive ink comprising the nano-silver powder are disclosed. The disclosure describes a disperser dissoluble in water and weak solvents and an alcohol amine as reducing agent to prepare mono-dispersed nano-silver, and employs ultrafiltration for purification and spray drying process to obtain a nano-silver powder dispersible in weak solvents, and thereby obtain an eco-solvent nano-silver electrically conductive ink. The electrically conductive ink in accordance with the disclosure has advantages of high safety, low volatility, low toxicity, high flash point, resistant to ultraviolet radiation and moisture etc., and can be used with uncoated bearing substrates, and is suitable for use in outdoor environments.
Abstract:
The present invention discloses a method for preparing nano-copper powder, comprising: (1) providing a dispersion solution, containing copper salt precursor and disperser, the disperser is dissoluble in both water and weak solvents, and is an acrylic modified polyurethane disperser; (2) providing a reducer dispersion solution, containing reducer, the reducer is organic borane; (3) contacting the reducer dispersion solution with the dispersion solution in a condition enough to reduce the copper salt precursor by the reducer into elementary copper; (4) separating copper nano-particles from reaction solution obtained by step (3), and drying separated copper nano-particles by spray drying, so as to obtain the nano-copper powder. The nano-copper powder prepared by the method in accordance with the present invention is dispersible in both water and environment-friendly weak solvents, which can be used to prepare weak solvent-type electrically conductive ink.
Abstract:
A photonic crystal microsphere, comprising: a plurality of mono-dispersed polymer particles in a closely-packed and regularly-ordered structure, with interstition therebetween, forming the photonic crystal microsphere; and a co-assembly material contained in the interstition. The photonic crystal microsphere provides a structure of enhanced strength and a good color effect.
Abstract:
A method of securing a layer of colloidal crystals to a substrate is provided, to enhance durability of an aesthetic effect provided by the colloidal crystals. The method involves depositing a layer of colloidal crystals formed of mono-dispersed particles on the substrate. Subsequently, a layer of water-borne coating is applied to the layer of colloidal crystals. To be effective, the water-borne coating should have a curing temperature that is less than the polymer glass transition temperature of the mono-dispersed particles forming the colloidal crystals. The water-borne coating penetrates through the colloidal crystals to the substrate thus retaining the colloidal crystals in place. The curing temperature of the water-borne coating ensures that the colloidal crystals are not damaged by the process for curing the coating.
Abstract:
The present invention pertains to the field of printing plates and discloses a planographic printing plate and preparation method. The planographic printing plate comprises: a metal substrate, a hydrophobic priming coat formed on a surface of the metal substrate and a hydrophilic graphic layer formed on the priming coat, wherein the hydrophobic priming coat is formed by a hydrophobic primer liquid through curing, the hydrophilic graphic layer is formed by inkjet-printing and curing a printing plate-making ink on the hydrophobic priming coat. The planographic printing plate according to the present invention may be printed by using water-based ink, so it can avoid the environmental pollution caused by using solvent-based ink during planographic printing. Further, through the cooperation of the hydrophobic priming coat formed by the hydrophobic primer liquid and the hydrophilic graphic layer formed by the printing plate-making ink, printed matters with desirable image resolution can be obtained.
Abstract:
The present invention discloses a method for preparing nano-copper powder. The method disclosed in the present invention comprises: (1) providing a dispersion solution, the dispersion solution contains at least one copper salt precursor and at least one disperser, the disperser is dissoluble in both water and weak solvents; (2) providing a reducer dispersion solution, the reducer dispersion solution contains at least one reducer; (3) contacting the reducer dispersion solution with the dispersion solution provided by step (1) in a condition enough to reduce the copper salt precursor by the reducer into elementary copper; (4) separating copper nano-particles from reaction solution obtained by step (3), and drying separated copper nano-particles by spray drying, so as to obtain the nano-copper powder. The nano-copper powder prepared by the method in accordance with the present invention is dispersible in both water and environment-friendly weak solvents. Therefore, the obtained nano-copper powder can be used to prepare weak solvent-type electrically conductive ink and overcome the drawbacks of poor weather resisting property of water-based electrically conductive ink and severe environmental pollution of solvent-type electrically conductive ink.