Abstract:
Techniques and mechanisms for a victim cache to operate in conjunction with another cache to help mitigate the risk of a side-channel attack. In an embodiment, a first line is evicted from a primary cache, and moved to a victim cache, based on a message indicating that a second line is to be stored to the primary cache. The victim cache is accessed using an independently randomized mapping. Subsequently, a request to access the first line results in a search of the victim cache and the primary cache. Based on the search, the first line is evicted from the victim cache, and reinserted in the primary cache. In another embodiment, reinsertion of the first line in the primary cache includes the first line and a third line being swapped between the primary cache and the victim cache.
Abstract:
Methods and apparatus relating to branch prefetch mechanisms for mitigating frontend branch resteers are described. In an embodiment, predecodes an entry in a cache to generate a predecoded branch operation. The entry is associated with a cold branch operation, where the cold branch operation corresponds to an operation that is detected for a first time after storage in an instruction cache and wherein the cold branch operation remains undecoded since it is stored at a location in a cache line prior to a subsequent location of a branch operation in the cache line. The predecoded branch operation is stored in a Branch Prefetch Buffer (BPB) in response to a cache line fill operation of the cold branch operation in an instruction cache. Other embodiments are also disclosed and claimed.
Abstract:
Methods and systems to identify and reproduce concurrency violations in multi-threaded programs are disclosed. An example method disclosed herein comprises determining whether a condition is met and serializing an operation of a first thread of a multi-threaded program relative to an operation of a second thread of the multi-threaded program. The serialization of the operations of the first and second threads results in a concurrency violation or bug thereby causing the multi-threaded program to crash. In this way, the operations of the first and second threads of the multi-threaded program that are responsible for the concurrency violation are identified and can be revised to remove the bug.
Abstract:
Methods and apparatus relating to branch prefetch mechanisms for mitigating front-end branch resteers are described. In an embodiment, predecodes an entry in a cache to generate a predecoded branch operation. The entry is associated with a cold branch operation, where the cold branch operation corresponds to an operation that is detected for a first time after storage in an instruction cache and wherein the cold branch operation remains undecoded since it is stored at a location in a cache line prior to a subsequent location of a branch operation in the cache line. The predecoded branch operation is stored in a Branch Prefetch Buffer (BPB) in response to a cache line fill operation of the cold branch operation in an instruction cache. Other embodiments are also disclosed and claimed.
Abstract:
Embodiments for dynamically mitigating speculation vulnerabilities are disclosed. In an embodiment, an apparatus includes speculation vulnerability mitigation hardware and speculation vulnerability detection hardware. The speculation vulnerability mitigation hardware is to implement one or more of a plurality of speculation vulnerability mitigation mechanisms. The speculation vulnerability detection hardware to detect vulnerability to a speculative execution attack and to provide to software an indication of speculative execution attack vulnerability.
Abstract:
A mechanism is described for facilitating dynamic and efficient management of instruction atomicity violations in software programs according to one embodiment. A method of embodiments, as described herein, includes receiving, at a replay logic from a recording system, a recording of a first software thread running a first macro instruction, and a second software thread running a second macro instruction. The first software thread and the second software thread are executed by a first core and a second core, respectively, of a processor at a computing device. The recording system may record interleavings between the first and second macro instructions. The method includes correctly replaying the recording of the interleavings of the first and second macro instructions precisely as they occurred. The correctly replaying may include replaying a local memory state of the first and second macro instructions and a global memory state of the first and second software threads.
Abstract:
Techniques for cache scrubbing for cache-set randomization to resist contention-based cache attacks are described. In certain examples, a system includes a memory; an execution circuit to cause a memory access request for the memory; a cache to store a plurality of sets that each include a plurality of cache lines from the memory; a cache randomizer circuit to generate a randomized index into the plurality of sets of the cache based on an address of the memory access request; and a cache scrubber circuit to determine that a number of invalid cache lines in a set of the plurality of sets of the cache is less than a threshold number of invalid cache lines, and in response, invalidate a valid cache line in the set of the plurality of sets of the cache.
Abstract:
Methods and systems to identify threads responsible for causing a concurrency bug in a computer program having a plurality of concurrently executing threads are disclosed. An example method disclosed herein includes defining, with a processor, a data type. The data type including a first predicate, the first predicate being invoked using a first program instruction inserted in a first thread of the plurality of threads, a second predicate, the second predicate being invoked using a second program instruction inserted in a second thread of the plurality of threads, and an expression defining a relationship between the first predicate and the second predicate. The method further includes, in response to determining the relationship is satisfied during execution of the computer program, identifying the first thread and the second thread as responsible for the concurrency bug.
Abstract:
Methods and systems to identify threads responsible for causing a concurrency bug in a computer program having a plurality of concurrently executing threads are disclosed. An example method disclosed herein includes defining, with a processor, a data type. The data type including a first predicate, the first predicate being invoked using a first program instruction inserted in a first thread of the plurality of threads, a second predicate, the second predicate being invoked using a second program instruction inserted in a second thread of the plurality of threads, and an expression defining a relationship between the first predicate and the second predicate. The method further includes, in response to determining the relationship is satisfied during execution of the computer program, identifying the first thread and the second thread as responsible for the concurrency bug.
Abstract:
Methods, apparatus, systems and articles of manufacture are disclosed to manage concurrent predicate expressions. An example method discloses inserting a first condition hook into a first thread, the first condition hook associated with a first condition, inserting a second condition hook into a second thread, the second condition hook associated with a second condition, preventing the second thread from executing until the first condition is satisfied, and identifying a concurrency violation when the second condition is satisfied.