Thin-film transistors with low contact resistance

    公开(公告)号:US11189733B2

    公开(公告)日:2021-11-30

    申请号:US16647679

    申请日:2018-01-10

    Abstract: Techniques are disclosed for forming thin-film transistors (TFTs) with low contact resistance. As disclosed in the present application, the low contact resistance can be achieved by intentionally thinning one or both of the source/drain (S/D) regions of the thin-film layer of the TFT device. As the TFT layer may have an initial thickness in the range of 20-65 nm, the techniques for thinning the S/D regions of the TFT layer described herein may reduce the thickness in one or both of those S/D regions to a resulting thickness of 3-10 nm, for example. Intentionally thinning one or both of the S/D regions of the TFT layer induces more electrostatic charges inside the thinned S/D region, thereby increasing the effective dopant in that S/D region. The increase in effective dopant in the thinned S/D region helps lower the related contact resistance, thereby leading to enhanced overall device performance.

    THIN-FILM TRANSISTORS WITH LOW CONTACT RESISTANCE

    公开(公告)号:US20200235246A1

    公开(公告)日:2020-07-23

    申请号:US16647679

    申请日:2018-01-10

    Abstract: Techniques are disclosed for forming thin-film transistors (TFTs) with low contact resistance. As disclosed in the present application, the low contact resistance can be achieved by intentionally thinning one or both of the source/drain (S/D) regions of the thin-film layer of the TFT device. As the TFT layer may have an initial thickness in the range of 20-65 nm, the techniques for thinning the S/D regions of the TFT layer described herein may reduce the thickness in one or both of those S/D regions to a resulting thickness of 3-10 nm, for example. Intentionally thinning one or both of the S/D regions of the TFT layer induces more electrostatic charges inside the thinned S/D region, thereby increasing the effective dopant in that S/D region. The increase in effective dopant in the thinned S/D region helps lower the related contact resistance, thereby leading to enhanced overall device performance.

Patent Agency Ranking