Stacked source-drain-gate connection and process for forming such

    公开(公告)号:US11916118B2

    公开(公告)日:2024-02-27

    申请号:US18130824

    申请日:2023-04-04

    CPC classification number: H01L29/41741 H01L29/41775

    Abstract: A device is disclosed. The device includes a first epitaxial region, a second epitaxial region, a first gate region between the first epitaxial region and a second epitaxial region, a first dielectric structure underneath the first epitaxial region, a second dielectric structure underneath the second epitaxial region, a third epitaxial region underneath the first epitaxial region, a fourth epitaxial region underneath the second epitaxial region, and a second gate region between the third epitaxial region and a fourth epitaxial region and below the first gate region. The device also includes, a conductor via extending from the first epitaxial region, through the first dielectric structure and the third epitaxial region, the conductor via narrower at an end of the conductor via that contacts the first epitaxial region than at an opposite end.

    TITANIUM CONTACT FORMATION
    9.
    发明公开

    公开(公告)号:US20230193473A1

    公开(公告)日:2023-06-22

    申请号:US17559897

    申请日:2021-12-22

    CPC classification number: C23C28/34 C23C28/32 C23C28/36 H01L23/5383

    Abstract: The formation of titanium contacts to silicon germanium (SiGe) comprises the formation of a titanium silicide layer in which the silicon for the titanium silicide layer is provided by flowing silane (disilane, trisilane, etc.) over a titanium layer at an elevated temperature. The titanium silicide layer can help limit the amount of titanium and germanium interdiffusion that can occur across the titanium silicide-silicon germanium interface, which can reduce (or eliminate) the formation of voids in the SiGe layer during subsequent anneal and other high-temperature processes. The surface of the SiGe layer upon which the titanium layer is formed can also be preamorphized via boron and germanium implantation to further improve the robustness of the SiGe layer against microvoid development. The resulting titanium contacts are thermally stable in that their resistance remains substantially unchanged after being subjected to downstream annealing and high-temperature processing processes.

Patent Agency Ranking