Abstract:
A waveguide coupling system may include at least one waveguide member retention structure disposed on an exterior surface of a semiconductor package. The waveguide member retention structure may be disposed a defined distance or at a defined location with respect to an antenna carried by the semiconductor package. The waveguide member retention structure may engage and guide a waveguide member slidably inserted into the respective waveguide member retention structure. The waveguide member retention structure may position the waveguide member at a defined location with respect to the antenna to maximize the power transfer from the antenna to the waveguide member.
Abstract:
The present disclosure is directed to systems and methods for communicating between rack mounted devices disposed in the same or different racks separated by distances of less than a meter to a few tens of meters. The system includes a CMOS first mm-wave engine that includes mm-wave transceiver circuitry, mm-wave MODEM circuitry, power distribution and control circuitry, and a mm-wave waveguide connector. The CMOS first mm-wave engine communicably couples to a CMOS second mm-wave engine that also includes mm-wave transceiver circuitry, mm-wave MODEM circuitry, power distribution and control circuitry, and a mm-wave waveguide connector. In some implementations, at least a portion of the mm-wave transceiver circuitry may be fabricated using III-V semiconductor manufacturing methods. The use of mm-wave communication techniques beneficially improves data integrity and increases achievable datarates, and reduces power costs.
Abstract:
The systems and methods described herein provide a traveling wave launcher system physically and communicably coupled to a semiconductor package and to a waveguide connector. The traveling wave launcher system includes a slot-line signal converter and a tapered slot launcher. The slot-line signal converter may be formed integral with the semiconductor package and includes a balun structure that converts the microstrip signal to a slot-line signal. The tapered slot launcher is communicably coupled to the slot-line signal converter and includes a planar first member and a planar second member that form a slot. The tapered slot launcher converts the slot-line signal to a traveling wave signal that is propagated to the waveguide connector.
Abstract:
A die package is described that includes a substrate to carry passive components. In one example, the package has a semiconductor die having active circuitry near a front side of the die and having a back side opposite the front side, and a component substrate near the back side of the die. A plurality of passive electrical components are on the component substrate and a conductive path connects a passive component to the active circuitry. The die has a silicon substrate between the front side and the back side and the conductive path is a through-silicon via through the die from the back side to the active circuit.
Abstract:
Integration of a side-radiating waveguide launcher system into a semiconductor package beneficially permits the coupling of a waveguide directly to the semiconductor package. Included are a first conductive member and a second conductive member separated by a dielectric material. Also included is a conductive structure, such as a plurality of vias, that conductively couples the first conductive member and the second conductive member. Together, the first conductive member, the second conductive member, and the conductive structure form an electrically conductive side-radiating waveguide launcher enclosing shaped space within the dielectric material. The shaped space includes a narrow first end and a wide second end. An RF excitation element is disposed proximate the first end and a waveguide may be operably coupled proximate the second end of the shaped space.
Abstract:
Waveguides disposed in either an interposer layer or directly in the semiconductor package substrate may be used to transfer signals between semiconductor dies coupled to the semiconductor package. For example, inter-semiconductor die communications using mm-wave carrier signals launched into waveguides specifically tuned to optimize transmission parameters of such signals. The use of such high frequencies beneficially provides for reliable transmission of modulated high data rate signals with lower losses than conductive traces and less cross-talk. The use of mm-wave waveguides provides higher data transfer rates per bump for bump-limited dies as well as beneficially providing improved signal integrity even at such higher data transfer rates. Such mm-wave waveguides may be built directly into semiconductor package layers or may be incorporated into one or more interposed layers that are physically and communicably coupled between the semiconductor dies and the semiconductor package substrate.