Abstract:
A structure for cooling an integrated circuit. The structure may include; an interposer cold plate having at least two expanding channels, each expanding channel having a flow direction from a channel inlet to a channel outlet, the flow direction having different directions for at least two of the at least two expanding channels, the channel inlet having an inlet width and the channel outlet having an outlet width, wherein the inlet width is less than the outlet width.
Abstract:
An apparatus and corresponding method for heat exchange. The heat exchange apparatus may include an adsorber device. The adsorber device is configured to draw heat from a first heat reservoir and transfer heat to a first heat sink. The heat exchange apparatus may include a heat exchanger fluidly connected to the adsorber device by the working fluid. The heat exchanger transfers heat to a second heat sink. The heat exchange apparatus may include an expansion device fluidly connected to the heat exchanger by the working fluid. The expansion device expands the working fluid, and exchanges heat with a second heat reservoir. The expansion device includes a turbine device for converting at least a part of an exergy of the working fluid during expansion into mechanical work. The heat exchange apparatus may include the adsorber device being fluidly connected to the expansion device by the working fluid.
Abstract:
A package structure to implement two-phase cooling includes a chip stack disposed on a substrate, and a package lid that encloses the chip stack. The chip stack includes a plurality of conjoined chips, a central inlet manifold formed through a central region of the chip stack, and a peripheral outlet manifold. The central input manifold includes inlet nozzles to feed liquid coolant into flow cavities formed between adjacent conjoined chips. The peripheral outlet manifold outputs heated liquid and vapor from the flow cavities. The package lid includes a central coolant supply inlet aligned to the central inlet manifold, and a peripheral liquid-vapor outlet to output heated liquid and vapor that exits from the peripheral outlet manifold. Guiding walls may be included in the flow cavities to guide a flow of liquid and vapor, and the guiding walls can be arranged to form radial flow channels that are feed by different inlet nozzles of the central inlet manifold.
Abstract:
A structure for cooling an integrated circuit. The structure may include; an interposer cold plate having at least two expanding channels, each expanding channel having a flow direction from a channel inlet to a channel outlet, the flow direction having different directions for at least two of the at least two expanding channels, the channel inlet having an inlet width and the channel outlet having an outlet width, wherein the inlet width is less than the outlet width.
Abstract:
A device for converting heat into mechanical energy is disclosed. The device includes a channel flow boiler having at least one channel adapted to heat a working fluid for generating a liquid-gas mixture; an expansion device adapted to expand the liquid-gas mixture; and a movable element arranged such that the expanding liquid-gas mixture at least partially converts an internal and/or kinetic energy of the liquid-gas mixture into mechanical energy associated with the movable element; wherein the channel flow boiler and/or the expansion device is adapted to supply heat to the liquid-gas mixture.
Abstract:
An apparatus and corresponding method for heat exchange. The heat exchange apparatus may include an adsorber device. The adsorber device is configured to draw heat from a first heat reservoir and transfer heat to a first heat sink. The heat exchange apparatus may include a heat exchanger fluidly connected to the adsorber device by the working fluid. The heat exchanger transfers heat to a second heat sink. The heat exchange apparatus may include an expansion device fluidly connected to the heat exchanger by the working fluid. The expansion device expands the working fluid, and exchanges heat with a second heat reservoir. The expansion device includes a turbine device for converting at least a part of an exergy of the working fluid during expansion into mechanical work. The heat exchange apparatus may include the adsorber device being fluidly connected to the expansion device by the working fluid.
Abstract:
A structure for cooling an integrated circuit. The structure may include; an interposer cold plate having at least two expanding channels, each expanding channel having a flow direction from a channel inlet to a channel outlet, the flow direction having different directions for at least two of the at least two expanding channels, the channel inlet having an inlet width and the channel outlet having an outlet width, wherein the inlet width is less than the outlet width.
Abstract:
A structure for cooling an integrated circuit. The structure may include; an interposer cold plate having at least two expanding channels, each expanding channel having a flow direction from a channel inlet to a channel outlet, the flow direction having different directions for at least two of the at least two expanding channels, the channel inlet having an inlet width and the channel outlet having an outlet width, wherein the inlet width is less than the outlet width.
Abstract:
A package structure to implement two-phase cooling includes a chip stack disposed on a substrate, and a package lid that encloses the chip stack. The chip stack includes a plurality of conjoined chips, a central inlet manifold formed through a central region of the chip stack, and a peripheral outlet manifold. The central input manifold includes inlet nozzles to feed liquid coolant into flow cavities formed between adjacent conjoined chips. The peripheral outlet manifold outputs heated liquid and vapor from the flow cavities. The package lid includes a central coolant supply inlet aligned to the central inlet manifold, and a peripheral liquid-vapor outlet to output heated liquid and vapor that exits from the peripheral outlet manifold. Guiding walls may be included in the flow cavities to guide a flow of liquid and vapor, and the guiding walls can be arranged to form radial flow channels that are feed by different inlet nozzles of the central inlet manifold.
Abstract:
A structure for cooling an integrated circuit. The structure may include; an interposer cold plate having at least two expanding channels, each expanding channel having a flow direction from a channel inlet to a channel outlet, the flow direction having different directions for at least two of the at least two expanding channels, the channel inlet having an inlet width and the channel outlet having an outlet width, wherein the inlet width is less than the outlet width.