Abstract:
Systems and methods are provided for implementing customer-transparent logic redundancy in scan chains for improved yield of integrated circuits. More specifically, an integrated circuit structure is provided for that includes a plurality of combined latch structures. Each of the combined latch structures includes an original latch and a redundant latch. The integrated circuit structure further includes a plurality of combined logic structures. Each of the combined logic structures includes an original logic structure a redundant logic structure. Each redundant latch is a duplicate of each respective original latch within a combined latch structure and each redundant logic structure is a duplicate of each respective original logic structure within a combined logic structure such that a two-fold library of latches and logic is provided for one or more scan chains of the integrated circuit structure
Abstract:
Methods and systems are provided for that are designed to impose an n-type to p-type device skew constraint that is beyond what normal technology limits allow in order to operate semiconductor devices at lower voltages while still achieving a similar performance at a lower power. More specifically, a method is provided for that includes setting device skew requirements for at least one library element, setting device skew test dispositions for the at least one library element based on the set device skew requirements, designing the at least one library element using device skew assumptions, fabricating the at least one library element on a product that includes at least one device skew monitor, determining an actual device skew of the fabricated at least one library element using the at least one device skew monitor, and determining whether the fabricated product meets target specifications.
Abstract:
Systems and methods are provided for implementing customer-transparent logic redundancy in scan chains for improved yield of integrated circuits. More specifically, an integrated circuit structure is provided for that includes a plurality of combined latch structures. Each of the combined latch structures includes an original latch and a redundant latch. The integrated circuit structure further includes a plurality of combined logic structures. Each of the combined logic structures includes an original logic structure a redundant logic structure. Each redundant latch is a duplicate of each respective original latch within a combined latch structure and each redundant logic structure is a duplicate of each respective original logic structure within a combined logic structure such that a two-fold library of latches and logic is provided for one or more scan chains of the integrated circuit structure.
Abstract:
Ternary content addressable memory (TCAM) structures and methods of use are disclosed. The memory architecture includes one or more ternary content addressable memory (TCAM) fields, and control logic that applies progressively discriminating data-masking and scores a closeness of a match based on matched and mismatched bits.
Abstract:
Approaches for an integrated circuit ternary content addressable memory (TCAM) are provided. A system includes an array of XY TCAM cells and respective translation circuits connected to respective pairs of the XY TCAM cells. The system also includes a memory controller structured to provide control signals to the respective translation circuits. The memory controller and respective translation circuits are structured to control the array of XY TCAM cells to perform single cycle update and single cycle search operations.
Abstract:
Ternary content addressable memory (TCAM) structures and methods of use are disclosed. The memory architecture includes one or more ternary content addressable memory (TCAM) fields, and control logic that applies progressively discriminating data-masking and scores a closeness of a match based on matched and mismatched bits.
Abstract:
Systems and methods are provided for implementing customer-transparent logic redundancy in scan chains for improved yield of integrated circuits. More specifically, an integrated circuit structure is provided for that includes a plurality of combined latch structures. Each of the combined latch structures includes an original latch and a redundant latch. The integrated circuit structure further includes a plurality of combined logic structures. Each of the combined logic structures includes an original logic structure a redundant logic structure. Each redundant latch is a duplicate of each respective original latch within a combined latch structure and each redundant logic structure is a duplicate of each respective original logic structure within a combined logic structure such that a two-fold library of latches and logic is provided for one or more scan chains of the integrated circuit structure.
Abstract:
Systems and methods are provided for implementing customer-transparent logic redundancy in scan chains for improved yield of integrated circuits. More specifically, an integrated circuit structure is provided for that includes a plurality of combined latch structures. Each of the combined latch structures includes an original latch and a redundant latch. The integrated circuit structure further includes a plurality of combined logic structures. Each of the combined logic structures includes an original logic structure a redundant logic structure. Each redundant latch is a duplicate of each respective original latch within a combined latch structure and each redundant logic structure is a duplicate of each respective original logic structure within a combined logic structure such that a two-fold library of latches and logic is provided for one or more scan chains of the integrated circuit structure.
Abstract:
An integrated circuit including a sense amplifier connected to a sense line is provided. The sense amplifier is configured to end a precharge phase of the sense line based on a state of the sense amplifier.
Abstract:
A computing device for a generating composite view for an intellectual property (IP) core may obtain constraints for multiple application specific integrated circuits (ASIC) designs in which the IP core is used; and determine composite constraints for the IP core based on the constraints for the multiple ASIC designs. The composite constraints may be within all constraints for the multiple ASIC designs. A freedom of change to update the particular IP core may be identified based on the composite constraints.