Abstract:
A method of forming a wiring structure for an integrated circuit device includes forming one or more copper lines within an interlevel dielectric layer (ILD); masking selected regions of the one or more copper lines; selectively plating metal cap regions over exposed regions of the one or more copper lines; and forming a conformal insulator layer over the metal cap regions and uncapped regions of the one or more copper lines.
Abstract:
A method of forming a wiring structure for an integrated circuit device includes forming one or more copper lines within an interlevel dielectric layer (ILD); masking selected regions of the one or more copper lines; selectively plating metal cap regions over exposed regions of the one or more copper lines; and forming a conformal insulator layer over the metal cap regions and uncapped regions of the one or more copper lines.
Abstract:
A method of forming a wiring structure for an integrated circuit device includes forming one or more copper lines within an interlevel dielectric layer (ILD); masking selected regions of the one or more copper lines; selectively plating metal cap regions over exposed regions of the one or more copper lines; and forming a conformal insulator layer over the metal cap regions and uncapped regions of the one or more copper lines.
Abstract:
Apparatus, method and computer program product for reducing overlay errors during a semiconductor photolithographic mask design process flow. The method obtains data representing density characteristics of a photo mask layout design; predicts stress induced displacements based on said obtained density characteristics data; and corrects the mask layout design data by specifying shift movement of individual photo mask design shapes to pre-compensate for predicted displacements. To obtain data representing density characteristics, the method merges pieces of data that are combined to make a photo mask to obtain a full reticle field data set. The merge includes a merge of data representing density characteristic driven stress effects. The density characteristics data for the merged reticle data are then computed. To predict stress-induced displacements, the method inputs said density characteristics data into a programmed model that predicts displacements as a function of density, and outputs the predicted shift data.
Abstract:
Various embodiments include computer-implemented methods, computer program products and systems for verifying an integrated circuit (IC) layout. In some cases, approaches include a computer-implemented method of verifying an IC layout, the method including: obtaining data about a process variation band for at least one physical feature in the IC layout; determining voltage-based process variation band thresholds for the at least one physical feature in the IC layout; determining whether the process variation band for the at least one physical feature in the IC layout meets design specifications for the IC layout based upon the voltage-based process variation band thresholds for the at least one physical feature in the IC layout; and modifying the IC layout in response to a determination that the process variation band for the at least one physical feature does not meet the design specifications.
Abstract:
A method of forming a wiring structure for an integrated circuit device includes forming one or more copper lines within an interlevel dielectric layer (ILD); masking selected regions of the one or more copper lines; selectively plating metal cap regions over exposed regions of the one or more copper lines; and forming a conformal insulator layer over the metal cap regions and uncapped regions of the one or more copper lines.
Abstract:
A method of forming a wiring structure for an integrated circuit device includes forming one or more copper lines within an interlevel dielectric layer (ILD); masking selected regions of the one or more copper lines; selectively plating metal cap regions over exposed regions of the one or more copper lines; and forming a conformal insulator layer over the metal cap regions and uncapped regions of the one or more copper lines.
Abstract:
A method of forming a wiring structure for an integrated circuit device includes forming one or more copper lines within an interlevel dielectric layer (ILD); masking selected regions of the one or more copper lines; selectively plating metal cap regions over exposed regions of the one or more copper lines; and forming a conformal insulator layer over the metal cap regions and uncapped regions of the one or more copper lines.
Abstract:
A method of forming a wiring structure for an integrated circuit device includes forming one or more copper lines within an interlevel dielectric layer (ILD); masking selected regions of the one or more copper lines; selectively plating metal cap regions over exposed regions of the one or more copper lines; and forming a conformal insulator layer over the metal cap regions and uncapped regions of the one or more copper lines.
Abstract:
A method of forming a wiring structure for an integrated circuit device includes forming one or more copper lines within an interlevel dielectric layer (ILD); masking selected regions of the one or more copper lines; selectively plating metal cap regions over exposed regions of the one or more copper lines; and forming a conformal insulator layer over the metal cap regions and uncapped regions of the one or more copper lines.