摘要:
A semiconductor device structure includes an MRAM metallization stack. A via is disposed within a dielectric cap layer that is on and in contact with the metallization stack. A liner is disposed on sidewalls and a bottom surface of the via. A recessed electrode contact is disposed within a portion of the via and in contact with a first part of the liner in contact with sidewalls of the via. A second part of the liner is in contact with the sidewalls is above a top surface of the contact. A method for forming the semiconductor device structure includes forming a via within a MRAM metallization stack. The via exposes a top surface of the second metal layer. An electrode contact is formed within a portion of the via. A cap layer is formed within a remaining portion of the via in contact with a top surface of the electrode contact.
摘要:
Methods for forming conductive regions of a metallization network with reduced leakage current and capacitance are described. Aspects of the invention include forming a trench in a dielectric material on the substrate, forming a first liner layer in a first portion of the trench, forming a second liner layer in a second portion of the trench, and forming a conductive material over the second liner layer in the trench.
摘要:
A substantially flat bottom electrode embedded in a dielectric for magnetoresistive random access memory (MRAM) devices includes pre-filling the contact via prior to filling the trench with tantalum nitride in a via/trench structure. The top surface of the substantially flat bottom electrode is coplanar to the top surface of the dielectric.
摘要:
BEOL and MOL interconnect structures with a self-forming sidewall barrier layer are provided. In one aspect, a method of forming an interconnect structure includes: patterning a feature(s) in a dielectric; selectively forming a metal layer at a bottom of the at least one feature; depositing a liner layer lining the feature(s), wherein the conformal liner layer includes a metal alloy AB; depositing a metal onto the liner layer to form the interconnect structure; and annealing the interconnect structure under conditions sufficient to form a barrier layer including the component B along vertical sidewalls of the feature(s). A method of forming an interconnect structure including a via and a trench on top of the via is also provided, as is an interconnect structure.
摘要:
Methods for forming conductive regions of a metallization network with reduced leakage current and capacitance are described. Aspects of the invention include forming a trench in a dielectric material on the substrate, forming a first liner layer in a first portion of the trench, forming a second liner layer in a second portion of the trench, and forming a conductive material over the second liner layer in the trench.
摘要:
A substantially flat bottom electrode embedded in a dielectric for magnetoresistive random access memory (MRAM) devices includes pre-filling the contact via prior to filling the trench with tantalum nitride in a via/trench structure. The top surface of the substantially flat bottom electrode is coplanar to the top surface of the dielectric.
摘要:
Methods for forming conductive regions of a metallization network with reduced leakage current and capacitance are described. Aspects of the invention include forming a trench in a dielectric material on the substrate, forming a first liner layer in a first portion of the trench, forming a second liner layer in a second portion of the trench, and forming a conductive material over the second liner layer in the trench.
摘要:
Methods for fabricating integrated circuits using chemical mechanical planarization (CMP) for recessing metal are provided. In an embodiment, a method for fabricating an integrated circuit includes filling a trench with a metal and forming an overburden portion of the metal outside of the trench. The method further includes performing a planarization process with an etching slurry to remove the overburden portion of the metal and to recess the metal within the trench.
摘要:
Methods for fabricating integrated circuits using chemical mechanical planarization (CMP) for recessing metal are provided. In an embodiment, a method for fabricating an integrated circuit includes filling a trench with a metal and forming an overburden portion of the metal outside of the trench. The method further includes performing a planarization process with an etching slurry to remove the overburden portion of the metal and to recess the metal within the trench.